Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Implantable prosthesis – Bone
Reexamination Certificate
2001-02-09
2003-12-02
McDermott, Corrine (Department: 3738)
Prosthesis (i.e., artificial body members), parts thereof, or ai
Implantable prosthesis
Bone
C623S023460, C623S022400
Reexamination Certificate
active
06656226
ABSTRACT:
THE BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a plastic jacket for a cementless artificial joint stem, and particularly to a plastic jacket for a cementless artificial joint stem, with jacket secured to the bone in such a manner that the cementless artificial joint stem can slide relative to the bone and the plastic jacket enclosing its stem.
2. Description of the Prior Art
Generally, an artificial hip joint, for example, consists of an acetabular part and a femoral or thigh bone part, wherein the acetabular and femoral parts are made of either metal, plastic, or ceramic, independently.
The human femur is formed of the soft cancellous bone in the metaphyseal region and hard cortical bone in the diaphyseal region. Therefore, in order to insert an artificial joint into the human body, operation is performed in such a way that the bone canal is reamed out at the proximal site, the stem of artificial joint is inserted and finally the anchorage is conducted by using cement, or in other case of not using cement, a stem having a porous or roughened surface layer on the outer circumference is inserted so as to allow the surface to get physiological interlocking with the bone as it grows.
The art for surgical operation based on the artificial joint using cement out of the two methods as described above is disclosed in the Korean patent publication 1814/1985 to the present applications as the patentee, titled “Torsion resistant artificial hip joint”.
Referring to
FIG. 1
, the art published in the Korean patent publication is briefly reviewed as below.
FIG. 1
shows the perspective view of an artificial joint using cement according to the conventional art. As shown in the drawing, the artificial joint
1
is integrally composed of a head
2
, neck
3
, collar
4
and stem
5
, starting with the top. The leading end of the collar
4
is curved to be secured tightly in the inner top edge of the cortex of the femur. The stem
5
is in a curved column with the top cross section resembling an ellipse which gradually varies to a circle at the bottom. Such a shape of the stem
5
is intended for protection from rotating due to the compressive force applied vertically from the top of the joint and the lateral force applied in perpendicular direction to the stem
5
of joint at the head
2
.
Further, on the upper external surface of such a stem
5
a blade
7
with an appropriate thickness is provided protrusively in longitudinal direction to prevent the joint from turning in the femur even in the case of a torque generated in an arbitrary direction after a surgery, wherein a fixing hole
8
is formed in the center of the blade
7
.
On the inward side of blade
7
, the stem
5
is formed with a number of lateral grooves at certain longitudinal intervals, in which grooves iron wires
9
in chain form are inserted in a manner of wrapping the stem
5
. On the surface of the stem
5
including the surface with chain-like wires
9
, cement
6
is coated to a certain thickness. Such a process of pre-coating with cement
6
is to facilitate adhesion with the cement used in the surgical operation and to reduce the heat generated during curing period through the reduced use of cement.
In order to introduce such an artificial joint in a human long bone, reaming is carried out at the bone canal beforehand so that the artificial joint
1
may be inserted with the stem
5
, after appropriate amount of cement is injected thereto. Subsequently, the stem
5
is inserted in the cement-injected area, so that this cement may adhere with the pre-coated cement layer
6
on the surface of the stem
5
, with the result that the stem
5
can be firmly secured in the femur.
However, the artificial joint using the cement as described above has the drawback in that the connection region is weak due to the fragile cement connection between the joint stem and the bone canal.
In order to compensate for such a drawback, the connection between the femur and the joint stem was modified so as to be physiologically interlocked at the joint stem with the ingrowth or ongrowth of the bone into the porous surface of the stem.
FIG. 2
shows a partially cut-out front view of an artificial joint without using cement according to a conventional art. As shown in the drawing, the artificial joint
10
has a metallic stem
11
coated with a porous plastic
12
, the surface of which is porous. Therefore, if the artificial joint coated with the porous plastic is inserted into the bone canal, as mentioned before, then, with gradual in-growth of the femur, the bone physiologically gets interlocked with the surface layer of the porous plastic
12
so as to fix the metallic stem
11
to the bone.
In the course of use of such cementless artificial joint which is fixed to a bone in a physiological manner, the axial force applied to the head
2
of a joint stem acts as a shear force at the interface of the bone and the stem to cause a micro sliding movement between the bone and the porous plastic
12
. Owing to resulting stress concentration, the porous plastic
12
attached to the surface of the stem is separated from the bone to make a gap between the stem and the bone, into which gap wear particles are infiltrated to accelerate osteolysis.
SUMMARY OF THE INVENTION
Therefore, the present invention was created to resolve the problem with the conventional art as described above and the object of the present invention is to provide a plastic jacket for a cementless artificial joint stem, wherein shear force detrimental to the service life of an artificial joint can be markedly reduced, by constructing the plastic jacket so as to be fixed to the bone and simultaneously to enclose the surface of the stem to thereby allow for the stem of the artificial joint to slide vertically relative to the bone, and wherein osteolysis of a bone due to the infiltration of wear particles can be minimized by curbing the gap formation between the bone and the stem.
Further, another object of the present invention is to provide a cementless artificial joint in which a stem is covered by a plastic jacket for the artificial stem.
To achieve the above first object, there is provided, according to an aspect of the invention, a plastic jacket for cementless artificial joint stem that is made of plastic and is so formed as to enclose at least a part of the stem of the cementless artificial joint, the stem and jacket being inserted longitudinally in the opening formed in the bone of a human body, and the plastic jacket has roughened surfaces so that the bone can interlock with the plastic jacket as the bone grows onto the porous surface.
To achieve the above-described second object of the invention, according to another aspect of the invention, there is provided an artificial joint with a plastic jacket for a cementless artificial joint stem, which has a head, neck and stem so as to be inserted in an opening formed by reaming out some part of the bone canal in a human body, wherein the plastic jacket is formed that it may enclose at least a part of its stem and is made of plastic, the surface of which characteristically is porous or roughened so that the bone can easily get interlocked by in-growth of the bone into the porous surface of the plastic jacket and wherein the end part of the jacket encompasses a redundant space to allow for the stem to slide down.
In the case of using an artificial joint equipped with a plastic jacket for a stem according to the invention, shearing stress is drastically reduced and proper amount of compressive stress is instead secured at the interface between the bone and the plastic jacket to prevent the sliding movement at that interface and simultaneously to suppress the formation of a gap between the plastic jacket and the bone, so that the osteolysis of femur due to the infiltration of wear particles can be minimized.
Further, in the case of using an artificial joint equipped with a plastic jacket for a cementless artificial joint stem according to the invention, the vertical load is partly convert
Bacon & Thomas PLLC
Chattopadhyay Urmi
Korea Advanced Institute of Science and Technology
McDermott Corrine
LandOfFree
Plastic jacket for a cementless artificial joint stem and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Plastic jacket for a cementless artificial joint stem and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Plastic jacket for a cementless artificial joint stem and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3108709