Plastic container having geometry minimizing spherulitic...

Plastic and nonmetallic article shaping or treating: processes – Direct application of fluid pressure differential to... – Including application of internal fluid pressure to hollow...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S900000

Reexamination Certificate

active

06413466

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
This invention generally relates to plastic containers for retaining a commodity during a pasteurization or retort process. More specifically, this invention relates to plastic containers having a shoulder geometry that minimizes spherulitic crystallization below the finish during subsequent thermal processing of the container and/or a product within the container and a method for manufacturing a like container.
BACKGROUND
Numerous commodities previously supplied in glass containers are now being supplied in plastic, more specifically polyester and even more specifically polyethylene terephthalate (PET), containers. The manufacturers and fillers, as well as consumers, have recognized that PET containers are lightweight, inexpensive, recyclable, and manufacturable in large quantities.
Manufacturers currently supply PET containers for various liquid commodities, such as beverages. Often these liquid products, such as juices and isotonics, are filled into the containers while the liquid product is at an elevated temperature, typically 68° C.-96° C. (155° F.-205° F.) and usually about 85° C. (185° F.). When packaged in this manner, the hot temperature of the liquid commodity is utilized to sterilize the container at the time of filling. This process and the containers designed to withstand it are respectively known as hot filling and hot fill or heat set containers. Hot filling works as an acceptable process with commodities having a high acid content. Non-high acid commodities, however, must be processed in a different manner and manufacturers and fillers also desire to supply PET containers for those commodities.
For non-high acid commodities, pasteurization and retort are the preferred sterilization methods. Pasteurization and retort both presents an enormous challenge for manufactures of PET containers in that heat set containers cannot withstand the temperature and time demands of pasteurization and retort.
Pasteurization and retort are both methods for cooking or sterilizing the contents of a container after it has been filled. Both processes include the heating of the contents of the container to a specified temperature, usually above about 70° C. (about 155° F.), for a specified length of time (20-60 minutes). Retort differs from pasteurization in that higher temperatures are used, as is an application of pressure externally to the container. The pressure is necessary because a hot water bath is often used and the overpressure keeps the water, as well as liquid in the product, in liquid form above its boiling point temperature.
These processes present technical challenges for manufactures of PET containers, since new pasteurizable and retortable PET containers for these commodities will have to perform above and beyond the current capabilities of conventional heat set containers. Quite simply, the PET containers of the current techniques in the art cannot be produced in an economical manner such that they maintain their material integrity during the thermal processing of pasteurization and retort.
PET is a crystallizable polymer, meaning that it is available in an amorphous form or a semi-crystalline form. The ability of a PET container to maintain its material integrity is related to the percentage of the PET container in crystalline form, also known as the “crystallinity” of the PET container. Crystallinity is characterized as a volume fraction by the equation:
Crystallinity
=
ρ
-
ρ
a
ρ
c
-
ρ
a
where &rgr; is the density of the PET material; &rgr;
a
is the density of pure amorphous PET material (1.333 g/cc); and &rgr;
c
is the density of pure crystalline material (1.455 g/cc).
The crystallinity of a PET container can be increased by mechanical processing and by thermal processing.
Mechanical processing involves orienting the amorphous material to achieve strain hardening. This processing commonly involves stretching a PET container along a longitudinal axis and expanding the PET container along a transverse or radial axis. The combination promotes what is known as biaxial orientation in the container. Manufacturers of PET bottles currently use mechanical processing to produce PET bottles having about 20% crystallinity in the container's sidewall.
Thermal processing involves heating the material (either amorphous or semi-crystalline) to promote crystal growth. On amorphous material, thermal processing of PET material results in a spherulitic morphology that interferes with the transmission of light. In other words, the resulting crystalline material is opaque (and generally undesirable). Used after mechanical processing, however, thermal processing results in higher crystallinity and excellent clarity. The thermal processing of an oriented PET container, which is known as heat setting, typically includes blow molding a PET preform against a mold heated to a temperature of about 120° C.-130° C. (about 100° F.-105° F.), and holding the blown container for about 3 seconds. Manufacturers of PET juice bottles, which must be hot filled at about 85° C., currently use heat setting to produce PET bottles having a crystallinity range of 25-30%. Although heat set PET bottles perform adequately during hot fill processes, they are inadequate to withstand a pasteurization or retort process.
It should be noted that as the term is used herein, pasteurization is referring to pasteurization processes where pasteurization of the commodity occurs within the container. Also, a distinction needs to be made between pasteurization temperatures of the commodity internally of the container verses those temperatures applied exteriorly of the container to achieve the desired internal commodity temperature. Unless otherwise indicated, the pasteurization temperatures referenced herein will refer to the external temperatures applied to the container in order to achieve pasteurization of the contents within the container.
A further distinction needs to be made between the pasteurization of liquids and the pasteurization of solid commodities (herein those commodities containing a portion of solids, e.g. pickles), both of which generally require an internal pasteurization temperature of about 750° C. (about 168° F.). In the pasteurization of liquid commodities, pasteurization temperatures of about 68° C.-79° C. (about 155° F.-175° F.) are required to achieve the desired internal pasteurization temperature. Pasteurization of this variety is herein referred to as low temperature pasteurization.
In the pasteurization of solid commodities, pasteurization temperatures of about 82° C.-99° C. (about 180° F.-210° F.) are required to achieve the desired internal pasteurization temperature, within generally the same amount of time. This is because of the lower thermal conductivity of the solid portions of the commodity. Pasteurization of this variety, where the pasteurization temperature is above 79° C. (175° F.) (the glass transition temperature of PET), is herein referred to as high temperature pasteurization.
For completeness, retort processes typically involves internal retort temperatures of 104° C.-121° C. (220° F.-250° F.) and external retort temperatures of 104° C.-132° C. (220° F.-270° F.). Unless specified otherwise, as used herein retort temperatures will be referring to external retort temperatures.
Since conventional heat set PET containers cannot withstand high temperature pasteurization and retort processing, the manufacturers of PET containers desire to produce a PET container that maintains aesthetic and material integrity during any subsequent high temperature pasteurization or retort of the contents in the PET container.
It is therefore an object of this invention to provide such a container that overcomes the problems and disadvantages of the conventional techniques in the art.
An object of this invention is therefore to provide a container capable of being subjected to high temperature pasteurization and retort while maintaining its aesthetic and material integrity.
Another object of this invention is to provide a container having high c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Plastic container having geometry minimizing spherulitic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Plastic container having geometry minimizing spherulitic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Plastic container having geometry minimizing spherulitic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2908843

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.