Plasma antenna system and method

Communications: radio wave antennas – Antennas – Having electric space discharge device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06657594

ABSTRACT:

CROSS REFERENCE TO OTHER PATENT APPLICATIONS
Not applicable.
BACKGROUND OF THE INVENTION
(1) Field of the Invention
The present invention relates generally to plasma antenna systems and, more specifically, to a laser excited plasma antenna system that may, in one embodiment, be utilized in a submarine.
(2) Description of the Prior Art
Submarine periscopes may typically include numerous antennas which have different shapes for different purposes. Conventional antennas utilized by submarine periscopes are solid metallic antennas and are, therefore, substantially inflexible. Due to the close proximity of the various metallic antennas, electromagnetic coupling is a problem that may affect broadcasting antenna patterns, reception antenna patterns, and antenna gains. The close proximity also creates noise, produces multipath problems, and causes other interference-related problems. Moreover, with the existing number of antennas within the periscope system, space for new antennas is currently a problem for periscope design.
Additionally, transmission lines must carry significant power to drive the antennas for broadcasting signals. These transmission lines are also closely spaced within the periscope tower. Therefore during broadcasting, when significant antenna drive power is applied to the transmission lines, electromagnetic interference may also arise due to the close proximity of transmission lines, antenna power connections, and transmitter power connections.
Patents that show attempts to solve problems related to the above are as follows:
U.S. Pat. No. 3,067,420, issued Dec. 4, 1962, to R. C. Jones et al., discloses a cylindrical plasma lens having a distribution of electron density which is circularly uniform on any given radius and non-uniform as a function of radius of the cylindrical lens. The device includes a means for transmitting electromagnetic energy through the lens in the general direction of one of the radii where the distribution as a function of radius is such that electromagnetic radiation applied at a periphery of the lens in a diametral direction is transmitted from the lens as two waves having wave fronts diverging at equal angles from the diametral direction.
U.S. Pat. No. 3,404,403, issued Oct. 1, 1968, to L. M. Valese et al., discloses a laser beam antenna comprising a laser means for producing at least one laser beam, means coupled to the laser means for repeatably pulsing the laser means, focusing means for focusing the laser beam at different points to thereby ionize a column of air, and means coupling a source of input signals to the base of the ionized column of air.
U.S. Pat. No. 3,544,993, issued Dec. 1, 1970, to Vandenplas et al., discloses a plasma coated antenna wherein an expandable sheath consists almost entirely of positively charged ions that act electrically like a vacuum to isolate the antenna from a layer of plasma which encompasses the antenna. The plasma layer may be maintained over the antenna by a suitable container. The antenna may be selectively tuned by varying either the thickness of the sheath or the density of the plasma.
U.S. Pat. No. 3,719,829, issued Mar. 6, 1973, to J. R. Vaill, discloses an apparatus and method in which a laser beam or other light source of comparable steradiancy is employed to establish a low-level ionization trail through a gas medium, and then auxiliary means external to the optical source is employed to increase the ionization with that initial trail to a high level to form a more highly conductive path over which useful amounts of electrical energy can be conducted for the transmission of intelligence or power.
U.S. Pat. No. 3,914,766, issued Oct. 21, 1975, to R. L. Moore, discloses a pulsating plasma device having a cylindrical plasma column and a pair of field exciter members disposed in spaced parallel relationship to the plasma column. Means are also provided for creating an electrostatic field through which oscillating energy is transferred between the plasma column and the field exciter members.
U.S. Pat. No. 5,594,456, issued Jan. 14, 1997, to Norris et al., discloses an antenna device for transmitting a short pulse duration signal of predetermined radio frequency that eliminates a trailing antenna resonance signal. The device includes a gas filled tube; a voltage source for developing an electrically conductive path along a length of the tube corresponding to a resonant wavelength multiple of the predetermined radio frequency; and a signal transmission source coupled to the tube for supplying a radio frequency signal to the conductive path for antenna transmission. A method for transmitting a short pulse signal without a trailing residual signal is also provided.
U.S. Pat. No. 5,694,498, issued Dec. 2, 1997, to Manasson et al., discloses systems and methods for optically controlled phase shifters. An apparatus includes a proximal rib waveguide and a phase shifter connected to the proximal rib waveguide. The phase shifter includes a first plasma induced modulator connected to the proximal rib waveguide having a first transmission coefficient “a” and including a first branch waveguide connected to the proximal rib waveguide; a first photosensitive semiconductive plasma injector connected to the first branch waveguide; a second plasma induced modulator connected to the proximal rib waveguide having a second transmission coefficient “b” and including a second branch waveguide connected to the proximal rib waveguide; a second photosensitive semiconductive plasma injector connected to the second branch waveguide; a third plasma induced modulator connected to the proximal rib waveguide having a third transmission coefficient “c” and including a third branch waveguide connected to the proximal rib waveguide; and a third photosensitive semiconductive plasma injector connected to the third branch waveguide. The transmission coefficients “a”, “b” and “c” are each less than or equal to 1. The systems and methods provide a substantial improvement in that a phased array antenna can be steered with the optically controlled phase shifters using much less controlling energy.
U.S. Pat. No. 5,864,322, issued Jan. 26, 1999, to Pollon et al., discloses an electronic scan antenna for generating an electrically scanned RF beam in response to an incident RF beam having at least one operating frequency band associated therewith including a ground plane for reflecting the incident RF beam and a phasing arrangement of plasma structures operatively coupled to the ground plane. Each plasma structure includes gas containing areas which are reflective at the operating frequency range, when ionized, forming ionized plasma areas. Each ionized plasma area is disposed a first distance from the ground plane, a second distance from adjacent ionized plasma areas and each plasma ionized plasma area has a particular size associated therewith. In this manner, each ionized plasma area, in cooperation with the ground plane, provides a portion of a composite RF beam which has a phase shift associated therewith. The electronic scan antenna of the present invention also includes a control circuit for selectively ionizing the gas containing areas such that the size of each ionized plasma area may be dynamically varied so as to dynamically vary the imparted phase shift. In this manner, the composite RF beam may be electronically scanned.
The above patents do not disclose or contemplate means for utilizing benefits of plasma antennas in a submarine periscope system, do not contemplate driving plasma antennas without creating electromagnetic interference, and do not contemplate a reduced size plasma antenna driven at plasma resonant frequencies. Moreover, the above patents do not disclose multiple plasma antenna systems which may be configured to reduce interference between antennas and/or may be provided within flexible containers to permit shape variations. Consequently, there remains a need for an improved plasma antenna system that may be used for general purposes but which may have particular advantages for use within a submarine periscop

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Plasma antenna system and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Plasma antenna system and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Plasma antenna system and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3172112

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.