Planting – Drilling – Frame and planting-element arrangement
Reexamination Certificate
2002-03-04
2004-02-17
Novosad, Christopher J. (Department: 3671)
Planting
Drilling
Frame and planting-element arrangement
C111S200000, C172S261000, C172S452000, C172S662000
Reexamination Certificate
active
06691629
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATIONS
Not applicable.
FIELD OF THE INVENTION
The present invention relates generally to agricultural equipment and more specifically to a coulter overload protection apparatus for use with a planter assembly.
BACKGROUND OF THE INVENTION
An exemplary agricultural planter assembly may includes support wheels centrally mounted to a long (e.g., 40 feet) implement bar with a tongue member extending centrally from the support wheels to a hitch on a tractor or some other type of prime mover and a plurality (e.g., sixteen) of separate coulter/fertilizer units and corresponding row units. Hereinafter, unless indicated otherwise and in the interest of simplifying this explanation, an exemplary planter assembly including a forty foot long implement bar and sixteen row units and corresponding coulter/fertilizer units will be assumed.
Each coulter/fertilizer unit is typically mounted to a front end of a corresponding row unit and includes a coulter or cutting knife member that cuts a fertilizer trench in soil there below and a fertilizer dispensing tube that delivers fertilizer into the fertilizer trench. The row units are mounted to the implement bar in an equi-spaced configuration. An exemplary row unit includes a seed bin, a dispenser and some type of soil agitator (e.g., a coulter or knife assembly). During operation, the agitators are forced into the ground and form seed trenches.
Each bin is mounted above a corresponding dispenser and feeds seed to the dispensers via gravity. The dispensers open behind corresponding agitators and drop seed into the seed trenches. The coulter/fertilizer units and corresponding row units are typically offset somewhat (e.g.,. 2 inches) so that the seed and fertilizer trenches are separated so that the fertilizer does not “burn” the seed as well known in the art. Once the seed sprouts, new plant roots make there way into the fertilizer trenches and growth is enhanced.
Typically the implement bar is moveable between an upright position where the ground engaging components of the row units and coulter/fertilizer units are raised above the ground for transport and a ground engaging position where the units can be activated to trench and fertilize and seed, respectively. Here the motive force for moving the implement bar between the upright and ground engaging positions may be either hydraulic or mechanical.
While a long implement bar and corresponding large number of row units and coulter/fertilizer units is advantageous during a planting operation (e.g., more row units translate into less time to perform a planting operation), long implement bars are difficult to accommodate during machine transport between fields, about a farmers property and during storage. To accommodate optimal transport and operating planter configurations, the industry has developed several different folding or pivoting implement bar configurations. One such pivoting configuration (hereinafter “the pivoting assembly”) is described in U.S. patent application Ser. No. 10/062,612 which is entitled “Planter Hitch Apparatus” was filed on Jan. 31, 2002 and which is incorporated herein, in its entirety, by reference. The pivoting assembly includes an implement bar and other components mounted to a mainframe assembly.
Hereinafter, unless indicated otherwise, when the implement bar is referenced, it will be assumed that the reference includes the implement bar and all other attached assembly components including the row units, the coulter/fertilizer units, etc. and when the implement bar weight is referenced it will be assumed that the implement bar weight reference corresponds to the combined weight of the implement bar and all attached components. In addition, unless indicated otherwise, when the mainframe is referenced, it will be assumed that the reference includes the mainframe and all other attached assembly components including the implement bar, the row units, the coulter/fertilizer units, etc. and when the mainframe weight is referenced it will be assumed that the mainframe weight reference corresponds to the combined weight of the mainframe and all attached components.
The pivoting assembly includes a carrier assembly having a carrier frame and a platform. The platform is mounted to a top surface of the carrier frame and the carrier frame has a width that should be relatively stable during operation and yet is limited to a dimension suitable for transport purposes. For instance, the width dimension may be 10 to 12 feet for a planter assembly including a 40 foot implement bar. Support wheels are mounted to the underside of the carrier frame along a single axis and proximate a rear edge of the carrier platform with at least one wheel proximate each end of the carrier frame width dimension so that the wheels provide stable support for the carrier frame and carrier platform there above. The mainframe is pivotally mounted to a rear side corner of a carrier platform so that the mainframe and implement bar attached thereto can be positioned perpendicular to the transport direction during operation and parallel to the transport direction during transport.
A roller or wheel assembly is spaced apart from the pivot and mounted to the underside of the mainframe to ease the conversion process between the transport and operating positions and to provide support to the mainframe and attached implement bar.
In addition, to support the implement bar when in the operating position, lateral support wheels are mounted to the distal ends of the implement bar that can be extended to engage the ground there below or can be retracted during conversion between the implement bar positions and during transport.
Whenever a wheel supported planter assembly is going to be attached to a tractor hitch for transport and operation, ideally the planter assembly is configured such that the implement assembly load is relatively balanced across the support wheels but has some positive hitching weight so that the assembly remains stable during transport. Here, as the phrase implies, positive hitch weight is caused by configuration weight disposed between the support wheels and a tractor hitch which tends to bear down on the hitch. Where positive hitch weight is to great some tractors may have difficulty moving a hitched planter assembly. Similarly, as the phrase implies, negative hitch weight is caused by configuration weight disposed on a side of the support wheels opposite the hitch and tends to tip the assembly tongue upward away from the hitch.
In the case of the pivoting assembly described above, it has been determined that, to best balance the implement assembly load across the support wheels in both the transport and operating positions, the implement bar and row units should be mounted such that, when the implement bar is in the operating and upright position (i.e., extends perpendicular to the transport direction with the row units in the upright position), the bar (and attached row units) is generally behind the support wheels. With the row units and bar mounted in this manner, when the implement bar is upright and in the operating position, the weight of the implement bar and the hitch and carrier platform together provide a stabilizing positive weight that is somewhat balanced in front of and behind the support wheels, the possibility of negative weight is minimal, the implement bar weight is essentially balanced on either lateral side of the wheels and is supported generally evenly across the pivot point and the roller assembly. In addition, when the implement bar is in the transport position (and hence is necessarily upright), the weight of the implement bar and attached components is greater in front than it is behind the support wheel axis, the overall positive weight is stable and yet not to great, the implement bar is positioned above the carrier platform and the implement bar weight is essentially evenly laterally distributed above the platform.
Unfortunately, when the implement bar and row units are optimally juxtaposed behind the support wheels, the wheels make it i
Bettin Leonard A.
Paluch Paul M.
Case LLC
Henkel Rebecca
Maurer Brant T.
Novosad Christopher J.
LandOfFree
Planter coulter apparatus with hydraulic overload protection does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Planter coulter apparatus with hydraulic overload protection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Planter coulter apparatus with hydraulic overload protection will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3320924