Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid
Reexamination Certificate
2000-08-30
2003-01-14
Jones, W. Gary (Department: 1655)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving nucleic acid
C435S024000, C435S069100, C435S320100, C435S419000, C435S468000, C435S412000, C800S287000, C800S278000, C800S281000, C800S320100, C800S320200, C800S320300, C536S023100, C536S023200, C536S023600, C536S024100
Reexamination Certificate
active
06506565
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the isolation and use of nucleic acid molecules for control of gene expression in plants, specifically novel plant promoters.
BACKGROUND OF THE INVENTION
One of the goals of plant genetic engineering is to produce plants with agronomically important characteristics or traits. Recent advances in genetic engineering have provided the requisite tools to transform plants to contain and express foreign genes (Kahl et al. (1995) World Journal of Microbiology and Biotechnology 11:449-460). Particularly desirable traits or qualities of interest for plant genetic engineering would include but are not limited to resistance to insects and other pests and disease-causing agents, tolerances to herbicides, enhanced stability, yield, or shelf-life, environmental tolerances, and nutritional enhancements. The technological advances in plant transformation and regeneration have enabled researchers to take pieces of DNA, such as a gene or genes from a heterologous source, or a native source, but modified to have different or improved qualities, and incorporate the exogenous DNA into the plant's genome. The gene or gene(s) can then be expressed in the plant cell to exhibit the added characteristic(s) or trait(s). In one approach, expression of a novel gene that is not normally expressed in a particular plant or plant tissue may confer a desired phenotypic effect. In another approach, transcription of a gene or part of a gene in an antisense orientation may produce a desirable effect by preventing or inhibiting expression of an endogenous gene.
Isolated plant promoters are useful for modifying plants through genetic engineering to have desired phenotypic characteristics. In order to produce such a transgenic plant, a vector that includes a heterologous gene sequence that confers the desired phenotype when expressed in the plant is introduced into the plant cell. The vector also includes a plant promoter that is operably linked to the heterologous gene sequence, often a promoter not normally associated with the heterologous gene. The vector is then introduced into a plant cell to produce a transformed plant cell, and the transformed plant cell is regenerated into a transgenic plant. The promoter controls expression of the introduced DNA sequence to which the promoter is operably linked and thus affects the desired characteristic conferred by the DNA sequence.
Since the promoter is a 5′ regulatory element which plays an integral part in the overall expression of a gene or gene(s), it would be advantageous to have a variety of promoters to tailor gene expression such that a gene or gene(s) is transcribed efficiently at the right time during plant growth and development, in the optimal location in the plant, and in the amount necessary to produce the desired effect. In one case, for example, constitutive expression of a gene product may be beneficial in one location of the plant, but less beneficial in another part of the plant. In other cases, it may be beneficial to have a gene product produced at a certain developmental stage of the plant, or in response to certain environmental or chemical stimuli. The commercial development of genetically improved germplasm has also advanced to the stage of introducing multiple traits into crop plants, also known as a gene stacking approach. In this approach, multiple genes conferring different characteristics of interest can be introduced into a plant. It is important when introducing multiple genes into a plant, that each gene is modulated or controlled for optimal expression and that the regulatory elements are diverse, to reduce the potential of gene silencing which can be caused by recombination of homologous sequences. In light of these and other considerations, it is apparent that optimal control of gene expression and regulatory element diversity are important in plant biotechnology.
The proper regulatory sequences must be present and in the proper location with respect to the DNA sequence of interest, for the newly inserted DNA to be transcribed and thereby, if desired translated into a protein in the plant cell. These regulatory sequences include but are not limited to a promoter, a 5′ untranslated leader, and a 3′ polyadenylation sequence. The ability to select the tissues in which to transcribe such foreign DNA and the time during plant growth in which to obtain transcription of such foreign DNA is also possible through the choice of appropriate promoter sequences that control transcription of these genes.
A variety of different types or classes of promoters can be used for plant genetic engineering. Promoters can be classified on the basis of range or tissue specificity. For example, promoters referred to as constitutive promoters are capable of transcribing operatively linked DNA sequences efficiently and expressing said DNA sequences in multiple tissues. Tissue-enhanced or tissue-specific promoters can be found upstream and operatively linked to DNA sequences normally transcribed in higher levels in certain plant tissues or specifically in certain plant tissues. Other classes of promoters would include but are not limited to inducible promoters which can be triggered by external stimuli such as chemical agents, developmental stimuli, or environmental stimuli. Thus, the different types of promoters desired can be obtained by isolating the upstream 5′ regulatory regions of DNA sequences which are transcribed and expressed in a constitutive, tissue-enhanced, or inducible manner.
The technological advances of high-throughput sequencing and bioinformatics has provided additional molecular tools for promoter discovery. Particular target plant cells, tissues, or organs at a specific stage of development, or under particular chemical, environmental, or physiological conditions can be used as source material to isolate the mRNA and construct cDNA libraries. The cDNA libraries are quickly sequenced and the expressed sequences catalogued electronically. Using sequence analysis software, thousands of sequences can be analyzed in a short period, and sequences from selected cDNA libraries can be compared. The combination of laboratory and computer-based subtraction methods allows researchers to scan and compare cDNA libraries and identify sequences with a desired expression profile. For example, sequences expressed preferentially in one tissue can be identified by comparing a cDNA library from one tissue to cDNA libraries of other tissues and electronically “subtracting” common sequences to find sequences only expressed in the target tissue of interest. The tissue enhanced sequence can then be used as a probe or primer to clone the corresponding full-length cDNA. A genomic library of the target plant can then be used to isolate the corresponding gene and the associated regulatory elements, including promoter sequences.
Multiple promoter sequences which confer a desired expression profile such as embryogenic or callus tissue-enhanced or specific promoters can be isolated by selectively comparing cDNA target embryogenic tissue or callus tissue libraries with non-target or non-target or background cDNA libraries such as libraries from leaf and root tissue to find the 5′ regulatory regions associated with the expressed sequences in those target libraries. The isolated promoter sequences can be used for selectively modulating expression of any operatively linked gene and provide additional regulatory element diversity in a plant expression vector in gene stacking approaches.
SUMMARY OF THE INVENTION
The present invention provides nucleic acid sequences which comprise regulatory sequences located upstream of the 5′ end of plant DNA structural coding sequences that are transcribed in embryogenic or callus tissue and shown in SEQ ID NOS: 36-51.
In one aspect, the present invention provides nucleic acid sequences comprising a sequence selected from the group consisting of SEQ ID NOS: 36-51 or any fragments, regions, or cis elements of the sequence which are capable of regula
Conner Timothy W.
Tzafrir Iris
Howrey Simon Arnold & White , LLP
Jones W. Gary
Monsanto Technology LLC
Stierwalt Brian K.
Taylor Janell E.
LandOfFree
Plant regulatory sequences for selective control of gene... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Plant regulatory sequences for selective control of gene..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Plant regulatory sequences for selective control of gene... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3043129