Plant material processing system

Textiles: fiber preparation – Liberating – Decorticating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C019S029000, C019S030000

Reexamination Certificate

active

06357083

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a system for processing plant material, and more particularly, to a system that separates fibers and woody portions of the plant material.
BACKGROUND OF THE INVENTION
It has long been known that the bast fibers of various plant materials, e.g. flax, jute, hemp, ramie, kenaf, have particular utility in a wide variety of textile and industrial uses. Accordingly, many different types of machines have been used to process the material for separating the bast fibers of the plant material from the woody portions thereof. For example, machines that utilize a scutching or beating or flailing action as the primary mechanism to break-up the woody material for dislodging it from associated fibers are well-known in the art.
A problem arises with the above-referenced processes in that they can tend to undesirably damage or shorten the fibers as they are being separated from the woody portions of the plant material and thereby yield a product that has fibers that are shortened beyond their optimum length for maximizing their commercial value. This is a particular problem in processing flax that is harvested for its seeds to produce linseed oil such as grown in North America. The North American strain of flax straw is a shorter plant that matures earlier so that it is cheaper to grow than the longer strains of flax straw which are specifically grown for fiber production, such as in Europe. Accordingly, processing flax straw, particularly of the North American strain requires that the woody portions or shive be separated from the flax fibers without a substantial shortening of the flax fibers given the short length of the flax straw to begin with. However, the equipment employed for this process is typically not specifically designed to handle the short North American strain of flax straw and generally causes too much shortening of the fiber rendering it less desirable for many commercial applications and difficult to process in terms of separating out the shive therefrom. Because of this, in most instances where the flax plant is cultivated for its oilseed in North America, there is no attempt made to process the flax to obtain the fibers therefrom. In 1996 in Canada alone, 2.2 million acres of flax straw were grown. As only approximately 10-20% of this acreage of flax was used for paper processing, it can be seen that there is a huge amount of untapped flax fiber that is not currently being used because of the above-described processing limitations.
The stalk of the flax plant has about 30-40% long outer bast fibers and 60-70% short woody inner core fibers or shives. The shives are left as a by-product when the flax material is processed to separate the fibers therefrom. Accordingly, the majority of the flax plant is left as a low-cost reject that is disposed of without any appreciable commercial gain such as by supplying it to farmers for livestock bedding, or for piling it along treelines as biomass to mix with soil and for stopping weed growth. In this regard, sale of shive material only takes in around $9 per ton. Shive has also been used in some board making, and pulp and paper applications.
The size of the shive separated by flax processing equipment from the fibers thereof can vary widely from small to large pieces of shive. In most current applications for shive, the size of the shive is not critical such that the variations in shive sizes as produced by current flax processing equipment are not an issue. On the other hand, applicants have found that shive that is ground to a fine, consistent size can be used in polymer composite applications as either a filler or a reinforcement additive. As opposed to most current applications where shive is utilized, the size of the shive can be critical in composite applications making the consistency of the small shive particles important.
Thus, it can be seen that there is a need for a plant material processing system, and particularly one that processes the short, tough North American strain of flax grown for its oilseed, that is effective to separate the fibers from the shive thereof without undesirably damaging and shortening the fibers. Further, there is a need for a processing system which can take the shive separated from the flax fibers and reduce it to a very fine, consistent size which has found particular utility in composite applications.
SUMMARY OF THE INVENTION
In accordance with the present invention, a system for processing plant material is provided which separates plant fibers from the woody portions of the material to produce a commercially desirable length of fiber and to grind the shorter woody portions that have been separated from the longer fibers to a desirable size which, as described, has found use in certain commercial applications. The current system is well suited to process the tough fibers of the North American strain of flax straw, and will also find utility in processing other bast fibers, such as jute, hemp, ramie, and kenaf.
In one form of the invention, a processing system is provided having a plurality of processing sections which separate woody portions from fibers of plant material and for reducing the size of the separated woody portions. These processing sections include a stripping section for exerting a pulling action on the plant material to strip woody portions therefrom while minimizing damage to and shortening of the fibers. Following the stripping section, a cleaning section is provided for separating the majority of the remaining woody portions associated with the plant fibers by scraping of the plant material to obtain a further separation of the remaining woody material for yielding a product that has a very high fiber purity with the scraping action similar to the stripping action, doing minimal damage to the fiber length so that the fibers remain at a length that is commercially valuable. The woody portions are taken from the stripping and cleaning sections and are then subjected to a grinding section which rapidly beats and grinds the woody portions to a small particle size.
The processing system may include a fiber recovery portion that has an oscillating sieve section for shaking and screening any longer fibers which may have dropped or fallen out of the stripping and cleaning sections along with the woody portions so that substantially only woody portions are fed to the grinding section. To ensure a consistent fine size of the woody portions or shive, a rotary screening section can be provided subsequent to the grinding section with the screening section sifting the woody portions to the commercially desired size such as for use in composite applications.
In one exemplary application of the use of the processing system herein, the plant material, e.g. oilseed flax after removal of the seed therefrom, fed to the stripping section has a length in the range of approximately 12-14 inches and the stripping section produces fibers having a length in the range of approximately 6-8 inches. After being subjected to the cleaning section, the fiber length is reduced to be in the range of approximately 4-6 inches. Accordingly, it can be seen that the fibers produced by the present processing system are kept to a length that is approximately between 30 to 50 percent of the original length of the flax straw that is fed into the processing system.
It should be understood that when discussing sizes of the plant material and the various portions thereof that by necessity these should be considered average sizes given the large volume of plant material that the present system processes. Because of the large volume throughput which the present processing system is designed to handle, e.g. on the order of 10,000 lbs of plant material per hour, there are bound to be variations in the sizes of the plant material and its portions that do not fall within the ranges as specified herein. Nevertheless, the majority of this material has been found to fall within the specified ranges despite minor variations therefrom.
Preferably, the stripping section yields a fiber

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Plant material processing system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Plant material processing system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Plant material processing system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2844391

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.