Plant husbandry – Receptacle for growing medium – Vertical array
Reexamination Certificate
2002-05-01
2003-09-09
Jordan, Charles T. (Department: 3644)
Plant husbandry
Receptacle for growing medium
Vertical array
Reexamination Certificate
active
06615542
ABSTRACT:
BACKGROUND OF INVENTION
A typical hydroponic plant growth system comprises a nutrient base and circulates a liquid nutrient through a cultivation portion wherein the plant seeds or young plants are anchored. For example, U.S. Pat. No. 5,502,923 discloses a hydroponic plant growth system which consists of a nutrient supply module base which supplies liquid nutrient to a series of vertically stacked prop modules, each prop module containing a number of plant growth sites. As liquid nutrient is pumped to each prop module, water is distributed to the plants grown therein.
U.S. Pat. No. 4,986,027 discloses a plant growth apparatus comprising a flexible tubular element wherein slits are provided for the growth of plants. A fluid nutrient is supplied to the root permeable material via a pump system, the fluid nutrient thereby being supplied to the plants.
Similarly, U.S. Pat. Nos. 5,440,836, 5,555,676, 5,918,416 and 4,033,072 all disclose vertical growing columns for growing a number of plants which are supplied water and nutrients through the use of nutrient solution pumps in the base of the respective apparatuses, which supply liquid nutrient to the top of the apparatuses. The liquid nutrient is supplied to the plants as the liquid travels from the top of the apparatuses to the bases.
Further, the prior art indicates that multiple vertical plant grow columns may utilize a single nutrient base. For example, U.S. Pat. No. 5,363,594 discloses a structure for a vertically oriented plant growth unit having a plurality of vertical columns arranged to conserve horizontal floor space and utilize a common base for the supply of liquid nutrient.
One of the potential limitations of the growth units described above is that the various plants of the growth units may receive different types and amounts of light from whatever light source is utilized. The differences in light quality and quantity may result in a divergence in growth and quality between plants grown at various levels and on various sides of the vertical columns.
U.S. Pat. No. 6,178,692 discloses a lighting system for use with one or more vertical growing columns. The lighting system is mobile and can apparently be angled to provide for equidistant lighting to the plants at both the top and the bottom of the vertical growth column. However, it would appear that equidistant lighting is to be provided by the lighting apparatus to a single side of each growth column. Each vertical column apparently has plants growing on all sides of the vertical unit and therefore a single lighting unit would appear only to provide equidistant lighting to those plants which are somewhat facing the lighting unit. To provide equidistant lighting to all plants on the growing columns, it would appear that two lighting units are set up on either side of one or more growing columns and angled to provide top to bottom equidistant lighting on each side of the vertical grow columns, thereby providing equidistant lighting to all plants. In at least some embodiments, this system therefore appears to be limited by the requirement for multiple lighting units to create equidistant lighting to all plants.
SUMMARY OF INVENTION
In one aspect, the present invention provides for a plant growth unit including a plurality of growth sites, means for supporting the growth sites, and means for establishing a liquid nutrient flow. The growth sites may be radially supported about a central vertical longitudinal axis and the supporting means may define an internal space between the plurality of growth sites so that the growth sites generally face the internal space. The internal space may be adapted to accommodate a light source. The supporting means may have an upper portion and a lower portion. The means for establishing a liquid nutrient flow may circulate a liquid nutrient to the upper portion of the supporting means and past growth sites to the lower portion of the supporting means so that the liquid nutrient flow comes into contact with each of the growth sites.
In some embodiments, the plant growth unit may have two or more of the growth sites approximately equidistant from the longitudinal axis. In yet other embodiments, at least some of the growth sites are vertically spaced apart, and the growth sites at generally the same vertically level are approximately equidistant from the longitudinal axis.
In some embodiments, the supporting means may include one or more columns radially disposed about the longitudinal axis, the one or more columns having longitudinal passages through which the liquid nutrient may pass. In other embodiments, the supporting means may include one or more supporters radially disposable about the longitudinal axis, operable to form a generally closed perimeter around the internal space.
In some embodiments, the plant growth unit may further include means for containing the liquid nutrient. The containing means may be, for example, a nutrient supply module. Alternatively, the liquid nutrient may by contained within the supporting means itself.
In some embodiments where the supporting means are one or more columns, the liquid nutrient flow is established by circulating the liquid nutrient from a nutrient supply module, in fluid communication with the one or more columns, to the upper portion of the one or more columns, through a longitudinal passage in the one or more columns to the respective lower portion of the one or more columns. In embodiments where the supporting means are one or more supporters, the liquid nutrient flow is established by circulating the liquid nutrient to the upper portion of the one or more supporters past the growth sites to the respective lower portion of the one or more supporters.
In some embodiments, the plant growth unit further includes at least one pump facilitating the liquid nutrient flow. The growth sites may protrude upwardly from the supporting means and the plant growth unit may further include a plurality of baskets adapted to hold plants and attachable to the growth sites. The plants may be anchored to the growth unit by being placed inside the baskets, which are then attached to the growth sites.
In another aspect, the present invention provides a plant growth unit including a nutrient supply module, one or more columns and a plurality of growth sites supported by the one or more columns. The nutrient supply module may be designed to contain a liquid nutrient. The one or more columns may be radially disposed about a central vertical longitudinal axis to define an internal space between the one or more columns. The internal space may be adapted to accommodate a light source. Each column may have an upper portion, a lower portion and a longitudinal passage through which the liquid nutrient may pass. Further, each column may be in fluid communication with the nutrient supply module for circulation of a liquid nutrient flow from the nutrient supply module to the upper portion of each of the one or more the columns and through the longitudinal passage to the respective lower portion of each of the one or more columns. The plurality of growth sites may be radially disposed about the longitudinal axis of the growth unit, generally facing the internal space, and each growth site may be positioned to contact the liquid nutrient flow.
In some embodiments, there are at least two columns and at least one growth site on each column. Such columns may be vertically oriented. In yet other embodiments, the growth unit has at least three columns, which may be circumferentially disposed in a generally circular pattern. In other embodiments, there is only one column which contains a plurality of growth sites. In such an embodiment, the single column defines its internal space by, for example, coiling around the longitudinal axis.
In accordance with some embodiments, two or more of the growth sites are approximately equidistant from the longitudinal axis. In other embodiments, at least two growth sites are located on each of the one or more columns and at least some of the growth sites on each column are vertically spaced apart
Graybeal Jackson Haley LLP
Jordan Charles T.
Lofdahl Jordan M
LandOfFree
Plant growth unit does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Plant growth unit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Plant growth unit will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3100539