Plant growth regulators in pyrrolidone solvents

Plant protecting and regulating compositions – Plant growth regulating compositions – Plural active ingredients

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C504S141000, C504S147000, C504S182000, C504S287000, C504S319000, C504S320000, C071SDIG004

Reexamination Certificate

active

06255250

ABSTRACT:

FIELD OF THE INVENTION
The present invention is related generally to the field of agriculture and specifically to compositions and use of plant growth regulators.
BACKGROUND OF THE INVENTION
Agriculture workers actively seek ways to improve the economic output of commercial crops. For example, in cotton crops, workers seek to improve such growth factors as increased in boll set, increased floral initiation, decreased floral abscission, decreased boll abscission, increased germination, and enhanced root growth. Workers also seek to increase plant tolerance to environmental stress.
Formulations containing plant growth regulators (PGRs) have been developed to improve the economic yield of agricultural plants. Plant growth retardants and inhibitors of ethylene biosynthesis or action are two types of PGRs. Some plant growth retardants have been shown to inhibit gibberellin biosynthesis resulting in the reduction of shoot height in small grains and cotton. This reduction in shoot height has a strong economic benefit since it provides for less lodging in small grains and reduction of excessive vegetative growth. It also provides more uniform ripening in cotton.
Three groups of gibberellin biosynthesis inhibitors are known. The first group encompasses compounds with quaternary ammonium, phosphonium or sulphonium moieties. One example of a compound from this group is mepiquat chloride, described in U.S. Pat. No. 3,905,798 and incorporated herein by reference. Mepiquat chloride may increase cotton yields, boll load, lint yield and seed yield. Mepiquat chloride is also known to reduce vegetative growth, plant height and boll rot. Mepiquat chloride also induces early uniform ripeness if the plants are treated early during their development. Chlormequat chloride is also a representative compound of this group.
The second group of plant growth retardants encompasses compounds with a nitrogen containing heterocycle such as flurprimidol, paclobutrazol, uniconazole and ancymidol.
The third group encompasses acylcylcohexanediones (such as trinexapac-ethyl and prohexadione-Ca) and daminozide.
It is known that ethylene is involved in plant senescence and plant stress reactions. Ethylene is also involved in leaf, flower, and fruit abscission. Hence, agents that inhibit or regulate the production of ethylene or control its action in plants have been developed in an effort to improve the yield of agricultural crops. Inhibitors of ethylene biosynthesis include substituted oxime-ethers as described in U.S. Pat. No. 4,744,811, incorporated herein by reference. These compounds are also described in PCT Application WO 95-02211, incorporated herein by reference, as being soil amendment compositions that increase the assimilation of nitrogen by higher plants.
Other inhibitors of ethylene biosynthesis or action include aminoethoxyvinylglycine (“AVG”), aminooxyacetic acid (“AOA”), rhizobitoxine, and methoxyvinyl glycine (“MVG”). Silver ions (e.g. silver thiosulfate), and 2,5-norbornadiene inhibit ethylene action.
Plant growth regulators have also been used to protect crops from the effects of environmental stress. Gianfagna, T. J. et al. “Mode of Action and Use of Growth Retardants in Reducing the Effects of Environmental Stress on Horticultural Crops: Karssen C. N. et al. (eds.)
Progress in Plant Growth Regulation,
pp. 778-87 (1992). For example, researchers found that if ethephon was applied at a low rate (0.08 mM) it significantly delayed bloom in peach and reduced side effects. Researchers also found that ethephon increased the yields and hardiness of several horticultural plants.
Although PGRs have been developed as a means to improve agricultural crop yields, certain obstacles make the actual use of the PGR prohibitive. For example, many of the compounds display phytotoxicity. Other compounds are difficult to synthesize.
Many compounds require high rate applications to be effective. For example, PCT Application WO 93/07747, incorporated herein by reference, describes an improvement in a plant growth factor by applying aminoethoxyvinylglycine (“AVG”), an inhibitor of ethylene biosynthesis, to cotton plants. As the rate of AVG treatment increased, so did the improvement. (WO 93/07747, Examples 2-4). Assuming that a spray volume of 500 I/ha was used, the rates of application described in WO 93/07747 would be approximately 62.5 to 500 g ai/ha (ai—active ingredient). The maximum rate response occurs at the highest rates.
High rate applications may result in a significant waste of material and may result in the discharge of the PGRs into the surrounding environment. Also, although many of these compounds may induce a beneficial growth habit, they do not provide consistent improvement in plant growth factors. Other compounds may lose their effectiveness or cause a reduction in yield when applied to species which are under some form of environmental stress.
Encapsulated herbicides, pesticides and plant growth regulators have been described in the prior art. The use of interfacial polymerization to microencapsulate both water-soluble and water-insoluble materials using polymers is known. Others have described entrapped water-insoluble PGRs in starch. U.S. Pat. No. 4.382,813.
Polyvinyl alcohol (PVA) has been described as: a protective colloid in an emulsion formed by the dispersion of an organic solution containing a plant growth regulator, U.S. Pat. No. 5,160,529; as a dispersant in an oil-in-water emulsion, U.S. Pat. No. 4,871,766; as an ingredient in powders, granules or lattices, U.S. Pat. No. 4,486,218; and as an ingredient in oil-in-water emulsions having particles from 1 to 200 microns wherein the emulsion also contains a thickener, U.S. Pat. No. 4,283,415.
U.S. Pat. No. 4,997,642 discloses stable oil-in-water emulsions containing a PVA, a surfactant, a salt, and a water-insoluble oily compound, such as a plant growth regulator, wherein the compound is dispersed as a particle having an average size of less than one micron.
It is also been noted that octylpyrrolidone and dodecylpyrrolidone are of increasing importance in plant protection formulations. Emulsions are also commonly suggested for use in plant protection formulations.
Although these formulations provide unique benefits in the art, obstacles still are encountered by those of ordinary skill in the art in developing formulations that are stable and allow for the active ingredient of the formulation to provide beneficial results when used for its intended purpose. Obstacles still remain in providing formulations that provide a suitable solution for an active agent such as an ethylene inhibitor wherein the active ingredient remains stable and provides its appropriate benefit to crops.
Hence, it is an object of this invention to not only provide a stable formulation, but one that also provides for a stable active compound in solution. It is also an object of the invention to provide a composition that allows for an increase in the activity of ethylene inhibitors.
SUMMARY OF THE INVENTION
Provided herein is a composition comprising a plant growth regulator, octylpyrrolidone, and an emulsifier. The emulsifier may be provided in combination with an ethylene oxide block polymer. Also provided herein is a method of improving a plant growth factor in a plant comprising administering to said plant a composition comprising a plant growth regulator, octylpyrrolidone, and an emulsifier. Still further provided is a method of increasing ethylene inhibition of an ethylene inhibitor comprising administering to said plant a composition comprising a plant growth regulator, octylpyrrolidone, and an emulsifier.
An improvement in a plant growth factor is defined as an agronomic improvement of plant growth such as increased floral (square) initiation, increased flower retention, increased fruit retention, increased square retention, increased boll retention, increased root growth, decreased internode length, increased stress tolerance, decreased wilting, decreased senescence, darker green pigmentation, increased germination rate, increased tolerance to low and high t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Plant growth regulators in pyrrolidone solvents does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Plant growth regulators in pyrrolidone solvents, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Plant growth regulators in pyrrolidone solvents will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2494109

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.