Plant growing system to maximize transplant yield

Plant husbandry – Receptacle for growing medium – Sectional construction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C047S066700, C047S077000, C047S087000, C047S901000

Reexamination Certificate

active

06779300

ABSTRACT:

I. TECHNICAL FIELD
Generally, this invention relates to a growing system that may incorporate plant production techniques to maximize transplanting yields or provide other enhancements. Specifically, the invention focuses upon techniques and technology for growing plants that when used in combination may result in higher transplanting yields which, in turn, may result in reduced production costs for greenhouse operators where controlling production costs is desirable. These can include processes that improve the transfer of plant seedlings from a high-density tray to a larger/lower density tray, can provide plant transplanting systems which, may be coordinated with requirements of plant seedlings and mechanical transplanters, can provide practical and functional ways in which the size, shape, number and dimensions of a tray and cell in which plant seedlings are initially grown can be coordinated with mechanical transplanters, can provide systems for automatically transplanting plants from small seedling trays to larger containers or trays, and can automate an existing mechanical transplanter so that a number of manual steps may be eliminated and replaced with automatic systems.
II. BACKGROUND
In the production of greenhouse plants from seeds, seeds may be sown into trays with small cells for individual germination. Seedlings are grown in these small cells for a short time before being transplanted into larger (usually finished) containers. Often greenhouse personnel transplant these individual cells by hand into the larger containers. This process is labor intensive and therefore expensive. Since this process of hand transplanting is not economical, several mechanical methods for transplanting the seedlings from the smaller cells to larger containers have been developed. The seedling can be either pulled up and out of the cell and then moved to the larger container or pushed down through the bottom of the cell into the larger container. The present invention focuses on tray designs and systems for transferring the seedling which are particularly appropriate to transfer by pushing it through the bottom of the cell into the larger container.
One type of transplanter that was developed to push the seedling and seedling rooting media through the bottom of the seedling tray into a larger container or tray is noted in U.S. Pat. No. 3,799,078 and U.S. Pat. No. 3,820,480. In these punch-down methods the seedling is punched through the bottom of the seedling tray into the new larger container or tray. These mechanical transplanters improved the efficiency of transplanting labor, but because of the mechanical aspect of the machinery and the like, there has sometimes been a reduction in the yield of seedlings when transplanted into larger containers and within the larger containers. Some seedlings may have been too small or too large to be successfully transplanted using a mechanical transplanter. This may have resulted in greenhouse operators purchasing seedlings that cannot be used, thereby decreasing the yields of finished containers to seedlings. Some seedlings may have been transplanted using this method, but because of mechanical damage to the seedling experienced during the mechanical transplanting process, the seedling later dies. This may result in greenhouse operators replacing the dead plant by hand. This can be very labor intensive and cost inefficient. Sometimes, the greenhouse operator may need to discard the product because it is not salable. This reduces the yield of the expected finished containers. Greenhouse production costs often exceed 70% of the overall product costs. Greenhouse operators need to control these production costs. The best way to do that is to increase yields. Increased yields reduce production expenses by reducing the amount of seedlings required to achieve the planned numbers and by decreasing labor costs due to efficient transplanting and eliminating the need to replace dead seedlings. Increased yields can also result in increased sales because an increased number of salable containers may be available. As production costs (such as fuel and labor) continue to increase, it can become more critical than ever for greenhouse operators to have higher yields to remain competitive in the market. Perhaps surprisingly, however, greenhouse operators have worked to improve seedlings and the transplanting process independent of those designing transfer systems and methods. The growing system in the present invention coordinates the seedling production with the transplanting process to maximize transplanting yields and provide other advantages.
In addition, while the system of pushing or punching the seedling into the new larger container can allow for a simple transfer from the seedling tray to the larger container or tray, a problem can exist in that there may be several steps that need to be accomplished by hand which slows the process down considerably. The punch-down transplanters frequently in use can have as many as 14 to 31 manual steps per seedling tray, depending on the ratio of the larger container or tray to the seedling tray. The slower the process, the more inefficient the use of labor. This can also cause increased production costs.
One problem that greenhouse operators struggle with is that seedling producers have not previously been producing seedlings specifically grown to be transplanted with a mechanical transplanter. In some settings, seedling producers have focused on seedling production for maximum germination, minimum time in the seedling tray and best quality seedling for transportation to the customer who may also do transplanting. On the other hand, transplanter manufacturing companies have historically focused on designing transplanters that transplant the seedlings very fast. The two areas have simply not been as coordinated as they could. For example, one of the problems with this punch-down method of transfer is that the seedling can often be put under pressure as it is punched down through the seedling tray and into the new larger container's media as shown in U.S. Pat. No. 3,799,078 and U.S. Pat. No. 3,820,480. This method uses a very small cell for the seedling, which can result in the transfer of an immature seedling with a small root system in a small amount of rooting media.
Because of the extremely small size of the individual cells, the seedlings can often be damaged during the punch out process. During the punching down process, the plant usually must fit through the opening at the bottom of the individual cell. Because of the high-density number of cells per tray, seedling leaves can be damaged because they do not often fit properly or optimally though the very small cell. This damage to the seedling can provide a wound for disease or insects, which can reduce the vigor of the transplanted plant or even cause death. The seedling can also be punched down through the seedling cell and into the new larger cell's media without a cavity for the seedling's root and media to reside in. The seedling's roots and media may be compressed into the new larger container's media potentially resulting in tearing and crushed roots. Tom and crushed roots allow disease and insects a point of entry, which may reduce seedling vigor and may lead to death of the seedling in the new, larger container.
Further, the amount of rooting media is often extremely small. Because of the small amount of media usually available for the seedling to root into, the root system of the seedling is often small and fragile and therefore subject to tearing or damage that may provide a wound entry for disease or reduce the overall root volume available to support the plant. Healthy roots are critical to high yields after transplanting. Seedlings with damaged, diseased roots usually have reduced vigor and increased mortality rates. All this may require the greenhouse operator to replace the dead plants or discard the container as unsalable. Small, immature seedlings have a higher mortality rate—often as high as a 10-15% value of increase de

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Plant growing system to maximize transplant yield does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Plant growing system to maximize transplant yield, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Plant growing system to maximize transplant yield will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3306162

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.