Planarization compositions and methods for removing...

Abrasive tool making process – material – or composition – With inorganic material – Clay – silica – or silicate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C106S003000, C051S307000

Reexamination Certificate

active

06322600

ABSTRACT:

BACKGROUND OF THE INVENTION
I. Technical Field
The present invention relates to a planarization composition which is particularly useful for thinning, polishing and planarizing integrated circuitry deposited on semiconductor wafers which have an inter-layer dielectric material deposited on their surfaces to form insulating dielectric films. The thinning, polishing and planarizing serves to remove a portion of the dielectric film so as to flatten and smoothen the deposited dielectric surface, and further to remove excess deposited dielectric material during the formation of shallow trench isolation structures. The invention also relates to a thinning, polishing and planarizing apparatus and method for carrying out the thinning, polishing and planarizing process to flatten and smoothen the dielectric film and to remove excess deposited dielectric material during the formation of shallow trench isolation structures.
II. Discussion of Related Art
In semiconductor processing, it is common to deposit a thin film of an insulating material, for example a dielectric such as doped or undoped oxides of silicon, over already existing dielectric thin films interspersed with other exposed semiconducting and conducting integrated circuit features such as a semiconductor trenches lined with a thin thermal oxide and high density plasma oxide, tungsten silicide/polysiliconlgate structures or titanium/aluminum/titanium nitride structures. The deposited insulating thin film acts as an electrical isolation layer between semiconductors and conducting pathways adjacent to and under the insulating thin film. The deposited material constitutes what is commonly referred to as a shallow trench isolation structures or an interlayer dielectric insulator. When this process is carried out, a thin coating of the material being deposited to fill, and therefore electrically isolate, the semiconductor and inter-gate and inter-metal gaps is deposited globally on the upper surface of the remaining exposed insulating thin films, semiconducting and conducting pathways. The deposited dielectric material is deposited to sufficiently fill the gaps between adjacent semiconducting gate structures and metal conducting pathways, thus partially planarizing the upper surface.
For shallow trench isolation and gate structures, it is preferable to fill the gaps and continue to deposit the dielectric so that there is an excess amount of dielectric material deposited substantially above the gaps. This process is commonly called a gap-fill process. Depending on the type of integrated circuit there may be from one to three types of dielectric materials deposited to complete the gap-fill process, such as the thermally grown and high density plasma CVD deposited oxides used for shallow trench isolation. Each type serves a unique purpose. However, after this dielectric gap-fill process, the planarity of the resultant gap-filled surface is not planar enough to be used as an imaging plane upon which the next pattern of circuitry is defined by photolithographic techniques. A surface that is not highly planar and that has a high scratch density and surface roughness will yield circuit features of varying degrees of quality that will have direct impact on device performance and yield. This is due to the non-planar scratched and rough regions being “out-of-focus” relative to the planar unscratched and smooth regions. Thus, this non-planar dielectric surface must be planarized and surface roughness and scratches be reduced further prior to carrying out the IC patterning process.
The removal of layers of this nature is generally carried out by a thinning, polishing and planarizing operation utilizing a hard surface of a polishing pad and a polishing slurry which wets the pad and is frictionally moved against the excess deposited dielectric surface to be removed. The slurry generally includes silica particles as the abrasive material along with a liquid carrier. Basically, the silica and the liquid carrier are respectively hard enough so as to abrade away the still unplanarized dielectric thin film. The aforementioned method planarizes by mechanical means only. The result, however, is a planarized surface that has a substantial number of scratches and a surface roughness that is not suitable for the manufacture of integrated circuits which utilize sub 0.3 5-micron geometries. Further, in addition to the polishing and planarizing rates for this method being too low to be production-worthy, this type of thinning, polishing and planarizing slurry is considered too dirty having high levels of potential yield-limiting metal ion impurities incorporated in the liquid carrier and the silica slurry abrasive.
It is well known to combine the abrasive and liquid carrier with a reactive chemical constituent. This method is commonly referred to as chemical mechanical polishing (CMP). In this process, more rapid thinning, polishing and planarizating can occur through utilization of an abrasive material, generally alumina or silica, along with a liquid carrier and a compound which is corrosive or oxidative toward or will dissolve the substrate. For example, U.S. Pat. No. 5,391,258 of Brancaleoni, et al. discusses such a process for enhancing the polishing rate of silicon, silica or silicon-containing articles including composites of metals and silica. The composition includes an oxidizing agent along with an anion which suppresses the rate of removal of the relatively soft silica thin film. The suppressing anion may be any of a number of carboxylic acids. Alumina is used as the abrasive material.
It is also known to utilize another abrasive material, specifically silica of very small size, to polish substrates such as rough cut silicon wafers prior to beginning their processing into integrated circuit devices. As an example, Shimizu, et al., in U.S. Pat. No. 4,842,837, teaches a process for producing fine spherical silica having a particle size of 0.5 m and less. The particles are mono-dispersed whereby polishing of the relatively soft, chemically reactive silicon wafer surface can be carried out to produce a substantially flat wafer surface. The resulting colloidal silica was proposed as a polish for silicon wafers, specifically silicon wafers but not interlayer dielectrics such as doped and undoped thermally grown or CVD deposited oxides of silicon. Further, the resulting colloidal silica had unacceptably high ammonia and alcohol contents that prohibited them from being used broadly in silica wafer polishing and frm being used for interlayer dielectric and shallow trench isolation CMP.
U.S. Pat. No. 5,376,222 discloses the use of colloidal silica in an alkaline solution for polishing a silica film on a semiconductor. The polishing solution includes a cation of an alkali metal, an alkaline earth, or an ammonium ion.
U.S. Pat. No. 3,877,183 discloses the use of precipitated silicates and/or silicofluorides as polishing substances for semiconductor materials. These polishing substances are utilized to polish the semiconductor, namely, silicon.
A very real problem exists with respect to polishing materials such as insulating dielectric films without scratches and sufficiently low enough surface roughness and post-planarization surface and dielectric film cleanliness. Insulating thin films are deposited within the channels which fills the channels but still leaves the dielectric thin film surface not planar enough. Further, insulating thin films are deposited to substantially fill shallow trenches. The trenches are intentionally over-filled and then polished and planarized back to the plane of the filled trench. So, what is commonly referred to as a planarization process, is implemented to remove, layer by layer, the “bumpiness” of the dielectric thin film, and to remove the globally deposited oxide trench over-fill back to the plane of the oxide filled trench.
Today's state of the art planarization process, although at one time was sufficient enough to fully planarize the dielectric surface, is no longer sufficient. Scratches (macro-scratches) and haze (

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Planarization compositions and methods for removing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Planarization compositions and methods for removing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Planarization compositions and methods for removing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2599136

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.