Planar subassembly for testing IC chips having faces with...

Electricity: measuring and testing – Fault detecting in electric circuits and of electric components – Of individual circuit component or element

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S765010, C324S760020

Reexamination Certificate

active

06522156

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to electromechanical apparatus for testing integrated circuit chips. More particularly, the present invention relates to chip testing apparatus in which a chip holding subassembly, a power converter subassembly, and a temperature regulating subassembly are squeezed together in multiple sets by respective pressing mechanisms which exert a substantially constant force despite several dimensional variations in the apparatus.
Typically, a single IC chip contains more than one-hundred-thousand transistors. Thus, a manufacturer of IC chips must test the chips to ensure that they operate properly before they are sold to a customer. This testing is usually accomplished as follows.
Initially, one group of chips that are to be tested are placed in respective sockets that are mounted on several printed circuit boards. Each printed circuit board has edge connectors on one edge of the board; and those connectors carry test signals, as well as DC electrical power, for the chips that are in the sockets.
After the chips are placed in the sockets, the printed circuit boards are inserted into fixed slots in an electromechanical apparatus where the chip testing occurs. As each printed circuit board is inserted into a slot, the edge connectors on the board plug into mating connectors that are provided in the slot.
Usually, several printed circuit boards are held in the slots, spaced-apart from each other, in a horizontal row. Alternatively, several printed circuit boards can be held in the slots, spaced-apart from each other, in a vertical column.
Multiple signal lines are provided in the chip testing apparatus which extend from the connectors in the slots to a test signal controller. This controller tests the chips by sending signals to the chips and receiving responses from them. Also, electrical power lines are provided in the chip testing apparatus which extend from the connectors in the slots to one or more power supplies.
Often it is desirable to perform a “burn-in” test on the chips wherein the chips are held at a high temperature while they are tested. In the prior art, that was done by enclosing the chip testing apparatus in an oven and providing fans in the enclosure which circulate hot air past the chips while they are tested.
However, one drawback with the above prior art chip testing apparatus is that the temperature at which the chips are tested cannot be regulated accurately. This inaccuracy is caused, in part, by variations in the temperature and velocity of the air which flows past each of the chips. Also, the inaccuracy is caused by variations in chip power dissipation which occurs while the chips are being tested, and this problem gets worse as the magnitude of the power variations increase.
One prior art mechanism which accurately regulates the temperature of IC chips in a product where the chips are permanently held, such as a computer, is described in U.S. Pat. No. 4,809,134, by Tustaniwskyj, et al, which is entitled “Low Stress Liquid Cooling Assembly”. That assembly includes a hollow jacket which carries a liquid coolant and the jacket contacts each IC chip. Thus the temperature of the chips is regulated accurately by conduction.
However, in the above '134 assembly, the jackets are held in place on the chips by a beam; and several bolts must be removed before the jackets can be lifted off the chips. To use such an assembly in a chip-testing environment would be impractical because there, the jackets need to be repeatedly taken off one set of chips and put on another set of chips.
Also, another drawback with the above prior art chip testing apparatus is that due to the row/column arrangement of the printed circuit boards, a large distance inherently exists between the chips that are tested and the power supplies for those chips. Due to those large distances, parasitic resistances, parasitic inductances and parasitic capacitances are inherently large; and thus, the more difficult it becomes to keep the chip voltages; constant while chip power dissipation changes rapidly as the chips are tested.
Accordingly, a primary object of the invention is to provide an improved electromechanical apparatus for testing IC chips which avoids the above drawbacks.
BRIEF SUMMARY OF THE INVENTION
The present invention, as claimed, covers one particular portion of an electromechanical apparatus for testing integrated circuit chips wherein a chip holding subassembly, a lower converter subassembly, and a temperature regulating subassembly are squeezed together in multiple sets by respective pressing mechanisms. A major benefit which is achieved with this electromechanical apparatus is that by pressing the temperature regulating subassembly against the chip holding subassembly, heat can be added/removed from the chips by conduction; and thus the temperature of the chips can be regulated accurately. Another major benefit which is achieved with this electromechanical apparatus is that by pressing the power converter subassembly against the chip holding subassembly, the distance between the chips that are tested and the power supplies for those chips is made small. Consequently, the chip voltages can easily be kept constant while the chip power dissipation changes rapidly as the chips are tested.
The particular portion of the electromechanical apparatus for testing chips which is claimed as the present invention is a generic subassembly which has a structure that is incorporated into the preferred embodiments of both the chip holding subassembly and the power converter subassembly. This generic subassembly is comprised of a planar substrate having first and second faces that are opposite to each other and are surrounded by an edge that is free of any electrical edge connectors. Attached to the first face of the substrate are a plurality of electrical components that are used in testing the chips, and, distributed on the second face of the substrate are a plurality of electrical contacts which are connected through the substrate to the electrical components on the first face. These electrical contacts get pressed against mating contacts, and they carry all electrical power and all electrical signals for the chips that are tested.
To use the above generic subassembly as the chip holding subassembly, the electrical components on the first face of the substrate include sockets which hold the chips that are tested. In one embodiment, several spacers are also attached to the first face between the sockets, and those spacers have selectable lengths which adjust the force with which the temperature regulating subassembly is pressed against the chips in the chip holding subassembly. To use the above generic subassembly as the power converter subassembly, the electrical components on the first face of the substrate include electrical power converters for the chips that are tested. In one embodiment, the power converters are proximately aligned with the chips that are held by the chip holding subassembly so that the distance between the chips and the power converters is very small.


REFERENCES:
patent: 5075821 (1991-12-01), McDonnal
patent: 5497079 (1996-03-01), Yamada et al.
patent: 5570032 (1996-10-01), Atkins et al.
patent: 5828223 (1998-10-01), Rabkin et al.
patent: 6108208 (2000-08-01), Tustaniwskyj et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Planar subassembly for testing IC chips having faces with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Planar subassembly for testing IC chips having faces with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Planar subassembly for testing IC chips having faces with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3169048

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.