Planar arrays of microparticle-bound polynucleotides

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S288300, C435S297500, C435S299100, C536S022100

Reexamination Certificate

active

06406848

ABSTRACT:

FIELD OF THE INVENTION
The invention relates generally to systems and apparatus for carrying out large scale parallel reactions on solid phase supports, and more particularly, to systems and apparatus for monitoring and carrying out reactions on arrays of microparticles.
BACKGROUND
The desire to understand and analyze complex chemical and biological systems has led to the development of analytical techniques that employ parallelization and miniaturization of analyte processing, e.g. Graber et al, Current Opinion in Biotechnology, 9: 14-18 (1998); Fodor et al, Nature, 364: 555-556 (1993); Meier-Ewert et al, Nature, 361: 375-376 (1993); Taylor et al, Nucleic Acids Research, 25: 3164-3168 (1997); Garner et al, BioTechniques, 14: 112-115 (1993); Lam et al, Nature, 354: 82-84 (1991); Ohlmeyer et al, Proc. Natl. Acad. Sci., 90: 10922-10926 (1993); DeRisi et al, Science, 278: 680-686 (1997); Wodicka et al, Nature Biotechnology, 15: 1359-1367 (1997); and the like.
Many of these techniques employ microparticles for synthesizing analytes or for capturing analytes for subsequent analysis, e.g. Lam et al (cited above); Benkovic et al, International patent application PCT/US95/03355; Gavin et al, International patent application PCT/EP97/02039; Brenner et al, International patent application PCT/US96/09513, and the like. Even though the properties of different types of microparticles can vary widely, microparticles generally facilitate the construction and manipulation of large repertoires of analytes with minimal reagent and/or sample consumption. However, handling and manipulating large numbers of microparticles, e.g. tens to hundreds of thousands, for carrying out specific chemical and/or biochemical analyses gives rise to many difficulties, including whether sufficient signal is generated on individual microparticles for detection, how to track individual microparticles through multiple steps of a process, mechanical strength of microparticles under pressure or flow conditions, the ability to uniformly deliver reagents to microparticles for carrying out steps of an analytical process, whether clumping or other inappropriate interaction of microparticles and/or reagents occurs, the degree to which analytes and/or processing reagents adsorb onto vessel walls, whether protein reagents or analytes denature causing a disruption of reagent distribution and access, whether adjacent microparticles will interact, e.g. to degrade or obscure a signal or to inhibit reagent access, and the like.
In view of these difficulties, it would be desirable to provide a system and apparatus for handling and processing multiple solid phase supports, such as populations of microparticles. It would be especially desirable if such system and apparatus permitted the tracking and analysis of multiple analytes anchored to separate microparticles through a sequence of several processing and/or analysis steps.
SUMMARY OF THE INVENTION
Accordingly, objects of our invention include, but are not limited to, providing a system and apparatus for sequentially delivering reagents to a population of analytes anchored to separate microparticles; providing an apparatus for simultaneously monitoring the interactions of processing reagents and analytes on the surfaces of microparticles disposed in a planar array; providing an apparatus for detecting optical signals generated by, or as the result of, interactions of processing reagents and analytes on the surfaces of microparticles disposed in a planar array; providing an apparatus for detecting pluralities of optical signals, each such plurality being generated at the surface of the same microparticle as a result of interactions between processing reagents and an analyte anchored to the surface of such microparticle; providing an apparatus for simultaneously tracking the positions of individual microparticles in a population of microparticles disposed in a flow chamber as a closely packed planar array; and providing a system and apparatus for simultaneously analyzing the nucleotide sequences of a population of polynucleotides anchored to microparticles disposed in a planar array in a flow chamber.
Our invention achieves these and other objects with an apparatus comprising a flow chamber for disposing a population of microparticles in a planar array; fluidic means for sequentially delivering processing reagents from one or more reagent reservoirs to the flow chamber; and detection means for detecting a sequence of optical signals from each of the microparticles of the population. Preferably, the sequences of optical signals are generated as a result of a multi-step analytical process, such as nucleic acid sequence analysis.
In one aspect, the invention provides a system for simultaneously monitoring a population of analytes which includes the apparatus of the invention, microparticles carrying the analytes, and software means for processing images of, and/or optical signals generated by, the microparticles when disposed in a planar array. Preferably, the flow chamber includes constraining means for restricting the movement of microparticles during cycles of reagent delivery.
In another aspect, the invention includes a system for simultaneously analyzing the nucleotide sequences of a population of polynucleotides. Copies of each kind of polynucleotide in the population are sorted onto and anchored to one or more microparticles so that a population of loaded microparticles is formed. Loaded microparticles are disposed in a planar array in a flow chamber through which processing reagents are sequentially delivered to the loaded microparticles from one or more reagent reservoirs by a fluidic means. Optical signals generated by, or produced as a result of, the interaction of processing reagents and polynucleotides on the microparticles are imaged by a detection means. Preferably, when analysis includes determining the nucleotide sequence of a portion of each polynucleotide on the different microparticles, massively parallel signature sequencing (MPSS) analysis is employed, e.g. as described in Albrecht et al, International patent application PCT/US97/09472.


REFERENCES:
patent: 5429807 (1995-07-01), Matson et al.
patent: 5708153 (1998-01-01), Dower et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Planar arrays of microparticle-bound polynucleotides does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Planar arrays of microparticle-bound polynucleotides, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Planar arrays of microparticle-bound polynucleotides will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2926932

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.