Planar antenna with switched beam diversity for interference...

Communications: radio wave antennas – Antennas – Slot type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C343S795000

Reexamination Certificate

active

06366254

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a new antenna apparatus. The antenna apparatus is directional and the receiving and transmitting portion thereof preferably of a thin, flat construction. The antenna has multiple elements which provide directivity. The antenna may be flush-mounted on a high impedance surface. The antenna apparatus includes beam diversity hardware to improve the signal transmission and reception of wireless communications. Since the receiving/transmitting portion of the antenna apparatus antenna may be flush-mounted, it can advantageously used on a mobile platform such as an automobile, a truck, a ship, a train or an aircraft.
BACKGROUND OF THE INVENTION
Prior art antennas and technology includes:
T. Schwengler, P. Perini, “Combined Space and Polarization Diversity Antennas”, U.S. Pat. No. 5,923,303, Jul. 13, 1999. An antenna system with both spatial and polarization diversity has a first antenna aperture and a second antenna aperture, with a polarization separation angle being formed by the difference between the polarization angle of the first antenna aperture and the polarization angle of the second antenna aperture, and a vertical separation being formed by mounting the second antenna aperture a vertical distance above the first antenna aperture, such that diversity gain is achieved by both the polarization angle and the vertical distance. The combination of spatial and polarization diversity allows closer antenna aperture spacing and non-orthogonal polarization angles. However, using current techniques, antennas having both polarizations cannot lie in a single plane—so the resulting antenna is not a low-profile antenna like the antenna disclosed herein.
M. Schnetzer, “Tapered Notch Antenna Using Coplanar Waveguide” U.S. Pat. No. 5,519,408. Tapered notch antennas, which are sometime known as Vivaldi antennas, may be made using standard printed circuit technologies.
D. Sievenpiper, E. Yablonovitch, “Circuit and Method for Eliminating Surface Currents on Metals” U.S. Provisional patent application, Ser. No. 60/079,953, filed on Mar. 30, 1998.
It is also known it the prior art to place a conformable end-fire or array on a Hi-Z surface. It has been shown that the Hi-Z material can allow flush-mounted antennas to radiate in end-fire mode, with the radiation exiting the surface at a small angle with respect to the horizon.
Conventional vehicular antennas consist of a vertical monopole which protrudes from the metallic exterior of vehicle, or a dipole embedded in the windshield or other window. Both antennas are designed to have an omnidirectional radiation pattern so signals from all directions can be received. One disadvantage of omnidirectional antennas is that they are particularly susceptible to interference and fading, caused by either unwanted signals from sources other than the desired base station, or by signals reflected from vehicle body and other objects in the environment in a phenomenon known as multipath. Antenna diversity, in which several antennas are used with a single receiver, can be used to help overcome multipath problems. The receiver utilizing antenna diversity switches between the antennas to find the strongest signal. In more complicated schemes, the receiver can select a linear combination of the signals from all antennas.
The disadvantage of antenna diversity is the need for multiple antennas, which can lead to an unsightly vehicle with poor aerodynamics. Many geometries have been proposed which reduce the profile of the antenna, including patch antennas, planar inverted F-antennas, slot antennas, and others. Patch and slot antennas are described by, C. Balanis,
Antenna Theory, Analysis and Design,
2nd ed., John Wiley & Sons, New York (1997). Planar inverted F-antennas are described by M. A. Jensen and Y. Rahmat-Samii, “Performance analysis of antennas for handheld transceivers using FDTD,”
IEEE Trans. Antennas Propagat.,
vol. 42, pp. 1106-1113, August 1994. These antennas all tend to suffer from unwanted surface wave excitation and the need for thick substrates or cavities.
As such, there is a need for an antenna which has low profile and has sufficient directivity to take advantage of antenna diversity. Preferably the antenna should not suffer from the effects of surface waves on the metal exterior of the vehicle.
The high impedance (Hi-Z) surface, which is the subject of U.S. No. 60/079,953 mentioned above, provides a means of fabricating very thin antennas, which can be mounted directly adjacent to a conductive surface without being shorted out. Near the resonance frequency, the structure exhibits high electromagnetic impedance. This means that it can accommodate non-zero tangential electric fields at the surface of a low-profile antenna, and can be used as a shielding layer between the metal exterior of a vehicle and the antenna. The total height is typically a small fraction of a wavelength, making this technology particularly attractive for mobile communications, where size and aerodynamics are important. Another property of this Hi-Z material is that it is capable of suppressing the propagation of surface waves. Surface waves normally exist on any metal surface, including the exterior metal skin of a vehicle, and can be a source of interference in many antenna situations. Surrounding the antenna with a small area of Hi-Z surface can shield the antenna from these surface waves. This has been shown to reduce multipath interference caused by scattering from ground plane edges.
The present application is related to (i) U.S. patent application Ser. No. 09/537,923 entitled “A Tunable Impedance Surface” filed Mar. 27, 2000, (ii) U.S. patent application Ser. No. 09/537,922 entitled “An Electronically Tunable Reflector” filed Mar. 29, 2000, (iii) U.S. patent application Ser. No. 09/537,921 entitled “An End-Fire Antenna or Array on Surface with Tunable Impedance” filed Mar. 29, 2000, (iv) U.S. patent application Ser. No. 09/520,503 entitled “A Polarization Converting Radio Frequency Reflecting Surface” filed Mar. 8, 2000, and to (v) U.S. patent application Ser. No. 09/525,832 entitled “Vivaldi Cloverleaf Antenna” filed Mar. the disclosures of which are hereby incorporated herein by this reference.
The Hi-Z surface, which is the subject matter of U.S. patent application Ser. No. 60/079,953 and which is depicted in
FIG. 1
a
, includes an array of resonant metal elements
12
arranged above a flat metal ground plane
14
. The size of each element is much less than the operating wavelength. The overall thickness of the structure is also much less than the operating wavelength. The presence of the resonant elements has the effect of changing the boundary condition at the surface, so that it appears as an artificial magnetic conductor, rather than an electric conductor. It has this property over a bandwidth ranging from a few percent to nearly an octave, depending on the thickness of the structure with respect to the operating wavelength. It is somewhat similar to a corrugated metal surface
22
(see
FIG. 1
b
), which has been known to use a resonant structure to transform a short circuit into an open circuit. Quarter wavelength slots
24
of a corrugated surface
22
are replaced with lumped circuit elements in the Hi-Z surface, resulting in a much thinner structure, as is shown in
FIG. 1
a.
The Hi-Z surface can be made in various forms, including a multi-layer structure with overlapping capacitor plates. Preferably the Hi-Z structure is formed on a printed circuit board (not shown in
FIG. 1
a
) with the elements
12
formed on one major surface thereof and the ground plane
14
formed on the other major surface thereof. Capacitive loading allows a frequency be lowered for a given thickness. Operating frequencies ranging from hundreds of megahertz to tens of gigahertz have been demonstrated using a variety of geometries of Hi-Z surfaces.
It has been shown that antennas can be placed directly adjacent the Hi-Z surface and will not be shorted out due to the unusual surface impedance. This is based on the fact that the Hi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Planar antenna with switched beam diversity for interference... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Planar antenna with switched beam diversity for interference..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Planar antenna with switched beam diversity for interference... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2867192

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.