Wheel substitutes for land vehicles – With means for tensioning track by moving at least one endwheel
Reexamination Certificate
2001-05-16
2003-11-04
Morano, S. Joseph (Department: 3617)
Wheel substitutes for land vehicles
With means for tensioning track by moving at least one endwheel
C305S144000, C305S145000
Reexamination Certificate
active
06641235
ABSTRACT:
BACKGROUND OF THE INVENTION
Track-driven machines typically require a system for maintaining proper tension in the tracks. The tension in the tracks must be sufficient to provide a driving friction force between a drive wheel and the track, but may not be so large as to damage the machine components or the track.
Improved methods and systems for tensioning tracks are needed. A track may be tensioned by biasing a wheel that engages the track. Various systems have been provided for tensioning a track by biasing a wheel.
SUMMARY OF THE INVENTION
A track tensioning system for a tracked vehicle having left and right tracks includes a biasing system for simultaneously providing track tensioning to both tracks by biasing each track through a track-tensioning arc. The biasing system may include a linear force-generating system for generating a track-tensioning force. The linear force-generating system may for example be a spring or a piston and cylinder assembly. The biasing system may also include a pivoting rocker arm assembly for transmitting the track-tensioning force from the linear force-generating system to the tracks.
In another embodiment, a track tensioning system for tensioning a left and right track on a tracked vehicle includes a left track tensioning wheel arranged and configured to engage the left track, a right track tensioning wheel arranged and configured to engage the right track, a force generating system for providing a track tensioning force, and a coupling system arranged and configured to couple the left track tensioning wheel and right track tensioning wheel to the force generating system. The left track tensioning wheel may be rotatable around a left rotation axis and pivotable in a left pivot plane around a left pivot axis that is displaced from the left rotation axis. The right track tensioning wheel may be rotatable around a right rotation axis and pivotable in a right pivot plane around a right pivot axis that is displaced from the right rotation axis.
The coupling system may be arranged and configured to couple the left track tensioning wheel and right track tensioning wheel to the force generating system for transmitting the biasing force from the force generating system to the left and right track tensioning wheels for tensioning the left and right track. The coupling system may include a rocker plate that is pivotably coupled to the force generating system for balancing the tension in the left and right tracks. The rocker plate may be coupled to the force generating system with a spherical bearing. The system may also include a left wheel plate that couples the rocker plate to the left track tensioning wheel and a right wheel plate that couples the rocker plate to the right track tensioning wheel. The rocker plate may be coupled to the left wheel plate with a left spherical bearing and coupled to the right wheel plate with a right spherical bearing. The tracked vehicle may define orthogonal X, Y, and Z axes and the rocker plate may be pivotable around each of the X, Y and Z axes.
The left pivot plane and right pivot plane may be substantially parallel. The left pivot plane and right pivot plane may also be substantially vertical. The rocker plate may have a neutral position in which the rocker plate is substantially perpendicular to the left pivot plane and right pivot plane.
The force generating system may include a piston and cylinder assembly. The piston and cylinder assembly may include a first end and a second end, the second end being coupled to the rocker plate by the spherical bearing. The frame may include portions defining a pocket for receiving the first end of the piston and cylinder assembly.
The track tensioning system may also include a bolt that couples the left wheel assembly to the right wheel assembly.
In another embodiment, a track tensioning system for simultaneously tensioning left and right tracks on a tracked vehicle includes a frame, left and right wheel plate assemblies that are each coupled to the frame, a rocker plate that is coupled to the left and right wheel plate assemblies, and a cylinder assembly having a front end and a back end, the front end being pivotably coupled to the rocker plate, the back end being supported by the frame. The cylinder assembly may be actuated to bias the rocker plate and the left and right wheel plate assemblies to tension the left and right tracks. The rocker plate may pivot to balance the tension in the left and right tracks.
The left wheel plate assembly may include a left wheel that is rotatable around a left wheel rotation axis and arranged and configured to engage the left track. The left wheel plate assembly may be pivotable in a left pivot plane around a left pivot axis that is displaced from the wheel rotation axis. The right wheel plate assembly may include a right wheel that is rotatable around a wheel rotation axis and arranged and configured to engage the right track. The right wheel plate assembly may be pivotable in a right pivot plane around a right pivot axis that is displaced from the wheel rotation axis. The left pivot plane may be substantially parallel to the right pivot plane. The left and right pivot planes may be substantially vertical. The left wheel rotation axis and right wheel rotation axes may be substantially parallel to the respective left and right pivot axis. The rocker plate may have a neutral position in which the rocker plate is substantially perpendicular to the left and right wheel plate assemblies. The rocker plate may be pivotable in three dimensions relative to the cylinder assembly. The rocker plate may be coupled to the cylinder assembly with a spherical bearing. The cylinder assembly may move through a substantially vertical cylinder pivot plane. A constant pressure may be maintained in the cylinder assembly for automatically adjusting the tension in the tracks.
The left and right wheel plate assemblies may each be pivotable in three dimensions relative to the rocker plate. The left and right wheel assemblies may each be coupled to the rocker plate with a spherical bearing.
The frame may include a left supporting surface and a right supporting surface. The left wheel plate assembly may be slidably supported by the left supporting surface of the frame and the right wheel plate assembly may be slidably supported by the right supporting surface of the frame. The left wheel plate assembly may be laterally displaced a distance from the right wheel plate assembly. The left and right supporting surfaces of the frame may prevent the left and right wheel plate assemblies from moving inward out of alignment with the tracks. The rocker plate may prevent the left and right wheel plate assemblies from moving outward out of alignment with the tracks.
The left and right wheel plate assemblies may each be coupled to the rocker plate with a spherical bearing. The system may include a shaft coupled to each end of the rocker plate. Each shaft may include a body for engaging a spherical bearing and a threaded end extending outwardly beyond the spherical bearing. The system may also include a nut engaged on the threaded end of each shaft. The system may also include a bolt that couples the left plate assembly to the right plate assembly.
The left wheel assembly and right wheel assembly may each include a drive wheel that is coupled to a hydraulic drive motor. The left wheel assembly may include a drive plate, a gear system housing coupled to the drive plate, and a gear system contained within the gear system housing, the gear system being coupled to the hydraulic motor and the drive wheel. The gear system may include a planetary gear system.
The system may also include a relief valve for relieving pressure in the cylinder to permit retraction of the left and right wheel plate assemblies when the interaction of the track tensioning system with a stationary object causes a pressure spike.
In another embodiment, a method of adjusting the tension in a left and right track on a tracked vehicle includes providing a frame, a left track tensioning system arranged and configure
Jarraff Industries Inc.
Merchant & Gould P.C.
Morano S. Joseph
Nguyen Long Bao
LandOfFree
Pivoting track tensioning system for a tracked vehicle does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Pivoting track tensioning system for a tracked vehicle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pivoting track tensioning system for a tracked vehicle will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3165225