Pivotable cable ring wire management system

Electricity: conductors and insulators – Conduits – cables or conductors – Extensible

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C174S0720TR, C174S100000, C248S068100, C248S074100, C361S826000

Reexamination Certificate

active

06613981

ABSTRACT:

BACKGROUND OF THE PRESENT INVENTION
1. Field of the Present Invention
The present invention relates generally to the field of wire management systems for electrical component racks, and more particularly to the field of multi-positional mounting members for electrical component racks utilizing moveable retention brackets or rings for securely retaining wires or cables therein.
2. Background Art
As is well known, electrical component racks are frequently utilized to store computer equipment and other electrical equipment of a variety of types. The various components are mounted on or in such racks in close proximity to one another and connected together by cables, wires, or the like, collectively referred to herein as “wires.”
Apparatuses for routing wires within and through the electrical component racks are likewise well known. In particular, a number of such apparatuses have utilized a plurality of rings or similar retention brackets installed in advantageous locations in a given rack, or attached to an elongated mounting member which may installed in a desired location in the rack. Wires may then be held in place on the rack by routing them through the interiors of the respective rings or retention brackets. In order to facilitate simple insertion and removal of wires from the respective rings, a gap commonly exists in the body of each ring, thus connecting the interior of the respective ring or retention bracket to its exterior. Unfortunately, not only does the gap permit wires to be inserted into the ring or retention bracket interior, but it permits wires to escape as well. Thus, retention brackets making use only of fingerlike projections extending toward each other from opposite sides of the mounting member have large gaps which provide only minimal retention properties in the area of the gap.
One solution to this problem is to use D-shaped rings which have a very narrow gap at one corner of the “D”. However, many prior art D-rings are rigid structures having fixed gaps which permit only a single wire having a cross-section smaller than the gap to be inserted into the interior at a time, thus limiting the size of wire which may be routed through the D-ring and requiring bundles of wires to be separated in order to install them within the interior of the D-ring. Other prior art D-rings are more flexible and may be bent outward by hand, thus widening the gap, to accommodate the insertion of wires. Unfortunately, the weight or other forces placed on the rings by the wires is usually directed in the same outward direction, and at the same point on the rings, as the force placed on the rings manually during wire insertion. The forces placed on the rings by the wires are frequently enough to bend the rings by themselves, thus widening the gap enough to allow the wires to escape. Thus, a need exists for a ring which is rigid enough to withstand the forces placed on it by the wires it surrounds but which is capable of providing a gap large enough to facilitate the insertion of bundles of wires.
A further problem arises with retention brackets which must be temporarily moved from one location to another. Once installed, many wires are disposed statically in that they are not moved out of their initial installed positions or locations unless they are being uninstalled. However, it is frequently advantageous for a wire or collection of wires to be easily moveable from one location to another in order to allow access to a particular area of a rack, to enable wire connections to be made more easily, to maintain a particular physical disposition between the wires and the equipment to which they are connected, or the like. One solution to this problem is to attach retention brackets to a mounting member which is pivotable relative to a stationary support structure. Unfortunately, prior art retention brackets also tend to rotate the wires retained therein as well, and this tends to twist and otherwise stress the wires each time the retention brackets are moved.
A further problem with prior art retention brackets involves those surfaces of the brackets which make contact with the wires retained therein. These surfaces, which are typically the inwardly-facing surfaces of the brackets, are typically flat or planar in shape, with minimal curvature at their edges. Thus, wires installed and retained within the brackets are often bent sharply around the edges of the inwardly-facing surfaces. When industry-standard curvature or “bend” requirements or recommendations for wires are not met, there is a much greater risk of damage being done to the wires, either by bending the wires so sharply that they are damaged or through the friction caused by the sharp edges of the retention brackets on the outside surfaces of the wire. Unfortunately, prior art retention brackets generally make no provision for these bend requirements or recommendations.
Some prior art retention brackets are believed to be formed from ring sections whose cross-sections are generally round, although they are not known to be formed to take into consideration the above-described “bend” requirements. Ring sections having round, uniform cross-sections are relatively easy to design and manufacture, and thus they are used for a variety of purposes. However, in order to rigidly attach a retention bracket to a mounting member, it is frequently advantageous for the retention bracket to include one or more flat surfaces which may be abutted against the mounting member to provide a stable interface. Unfortunately, ring sections having entirely round cross-sections do not include such flat mounting surfaces. Further, the ring sections of retention brackets must frequently be twisted in order to install wires therein, but must be subsequently able to return to their original shape in order to retain those wires. At the same time, the ring sections must be rigid enough to withstand the twisting forces placed on them by the wires. Unfortunately, ring sections having entirely round cross-sections are typically not capable of meeting these requirements. Thus, a need exists for a retention bracket having convex inner surfaces for safely guiding wires coupled with flat mounting surfaces for mounting the retention bracket to a support structure while at the same time providing the necessary structural strength to reliably retain the wires therein.
SUMMARY OF THE PRESENT INVENTION
Briefly summarized, the present invention relates to a pivotable cable ring wire management system for an electrical component rack which utilizes one or more round cable rings in order to securely retain wires or cables therein. Broadly defined, the pivotable cable ring wire management system according to one aspect of the present invention includes: a mounting member pivotably attachable to a stationary support structure, and at least one retention bracket extending from the mounting member, the retention bracket including a substantially circularly-shaped cable ring.
In features of this aspect, the mounting member is pivotable relative to the stationary support structure about an axis of rotation, the circular shape of the cable ring defines a central axis, and the axis of rotation and the central axis are generally parallel; the axis of rotation and the central axis are both generally vertical; the mounting member is pivotable relative to the stationary support structure about an axis of rotation, and the cable ring extends from the mounting member in a direction substantially perpendicular to the axis of rotation; the mounting member is pivotable relative to the stationary support structure about an axis of rotation, the cable ring defines a generally cylindrical interior defining a central axis, and the axis of rotation and the central axis are generally parallel; the mounting member is a swinging structure attached by hinges to the stationary support structure; the system further includes a swinging structure attached by hinges to the stationary support structure, and the mounting member is attached to the swinging structure; the stationary support structure is

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pivotable cable ring wire management system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pivotable cable ring wire management system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pivotable cable ring wire management system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3079238

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.