Pivot point reset lockout mechanism for a ground for fault...

Electricity: magnetically operated switches – magnets – and electr – Electromagnetically actuated switches – Automatic circuit-interrupting devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C361S042000

Reexamination Certificate

active

06771152

ABSTRACT:

BACKGROUND
1. Field
The present application is directed to resettable circuit interrupting devices including without limitation ground fault circuit interrupters (GFCI's). Certain embodiments of the present application are directed to circuit interrupting devices including a reset lock out portion capable of preventing the device from resetting in certain circumstances.
2. Description of the Related Art
Presently available GFCI devices, such as the device described in commonly owned U.S. Pat. No. 4,595,894, use an electrically activated trip mechanism to mechanically break an electrical connection between the line side and the load side of a GFCI. Such devices are resettable after they are tripped by, for example, the detection of a ground fault. In the device discussed in the '894 patent, the trip mechanism used to cause the mechanical breaking of the circuit (i.e., the conductive path between the line and load sides) includes a solenoid (or trip coil). A test button is used to test the trip mechanism and circuitry used to sense faults, and a reset button is used to reset the electrical connection between line and load sides.
Commonly owned application Ser. No. 09/138,955, filed Aug. 24, 1998, now U.S. Pat. No. 6,040,967, which is incorporated herein in its entirety by reference, describes a family of resettable circuit interrupting devices capable of locking out the reset portion of the device if the circuit interrupting portion is non-operational or if an open neutral condition exists.
Some of the circuit interrupting devices described above have a user accessible load side connection in addition to the line and load side connections. The user accessible load side connection includes one or more connection points where a user can externally connect to electrical power supplied from the line side. The load side connection and user accessible load side connection are typically electrically connected together. An example of such a circuit interrupting device is a GFCI receptacle, where the line and load side connections are binding screws and the user accessible load side connection is the plug connection to an internal receptacle. As noted, such devices are connected to external wiring so that line wires are connected to the line side connection and load side wires are connected to the load side connection. However, instances may occur where the circuit interrupting device is improperly connected to the external wires so that the load wires are connected to the line side connection and the line wires are connected to the load connection. This is known as reverse wiring. In the event the circuit interrupting device is reverse wired, fault protection to the user accessible load connection may be eliminated, even if fault protection to the load side connection remains. cl SUMMARY
The present application relates to a resettable circuit interrupting devices that maintain fault protection for the circuit interrupting device even if the device is reverse wired.
In one embodiment, the circuit interrupting device includes a housing and phase and neutral conductive paths disposed at least partially within the housing between line and load sides. Preferably, the phase conductive path terminates at a first connection capable of being electrically connected to a source of electricity, a second connection capable of conducting electricity to at least one load and a third connection capable of conducting electricity to at least one user accessible load. Similarly, the neutral conductive path, preferably, terminates at a first connection capable of being electrically connected to a source of electricity, a second connection capable of providing a neutral connection to the at least one load and a third connection capable of providing a neutral connection to the at least one user accessible load;
The circuit interrupting device also includes a circuit interrupting portion that is disposed within the housing and configured to cause electrical discontinuity in one or both of the phase and neutral conductive paths, between said line side and said load side upon the occurrence of a predetermined condition. A reset portion is disposed at least partially within the housing and is configured to reestablish electrical continuity in the open conductive paths.
Preferably, the phase conductive path includes a plurality of contacts that are capable of opening to cause electrical discontinuity in the phase conductive path and closing to reestablish electrical continuity in the phase conductive path, between said line and load sides. The neutral conductive path also includes a plurality of contacts that are capable of opening to cause electrical discontinuity in the neutral conductive path and closing to reestablish electrical continuity in the neutral conductive path, between said line and load sides. In this configuration, the circuit interrupting portion causes the plurality of contacts of the phase and neutral conductive paths to open, and the reset portion causes the plurality of contacts of the phase and neutral conductive paths to close.
One embodiment for the circuit interrupting portion uses an electro-mechanical circuit interrupter to cause electrical discontinuity in the phase and neutral conductive paths, and sensing circuitry to sense the occurrence of the predetermined condition. For example, the electro-mechanical circuit interrupter include a coil assembly, a movable plunger attached to the coil assembly and a banger attached to the plunger. The movable plunger is responsive to energizing of the coil assembly, and movement of the plunger is translated to movement of said banger. Movement of the banger causes the electrical discontinuity in the phase and/or neutral conductive paths.
The circuit interrupting device may also include reset lockout portion that prevents the reestablishing of electrical continuity in either the phase or neutral conductive path or both conductive paths, unless the circuit interrupting portion is operating properly. That is, the reset lockout prevents resetting of the device unless the circuit interrupting portion is operating properly. In embodiments where the circuit interrupting device includes a reset lockout portion, the reset portion may be configured so that at least one reset contact is electrically connected to the sensing circuitry of the circuit interrupting portion, and that depression of a reset button causes at least a portion of the phase conductive path to contact at least one reset contact. When contact is made between the phase conductive path and the at least one reset contact, the circuit interrupting portion is activated so that the reset lockout portion is disabled and electrical continuity in the phase and neutral conductive paths can be reestablished.
The circuit interrupting device may also include a trip portion that operates independently of the circuit interrupting portion. The trip portion is disposed at least partially within the housing and is configured to cause electrical discontinuity in the phase and/or neutral conductive paths independent of the operation of the circuit interrupting portion. In one embodiment, the trip portion includes a trip actuator accessible from an exterior of the housing and a trip arm preferably within the housing and extending from the trip actuator. The trip arm is preferably configured to facilitate mechanical breaking of electrical continuity in the phase and/or neutral conductive paths, if the trip actuator is actuated. Preferably, the trip actuator is a button. However, other known actuators are also contemplated.


REFERENCES:
patent: 4034266 (1977-07-01), Virani et al.
patent: 4595894 (1986-06-01), Doyle et al.
patent: 4719437 (1988-01-01), Yun
patent: 4802052 (1989-01-01), Brant et al.
patent: 4851951 (1989-07-01), Foster, Jr.
patent: 5223810 (1993-06-01), Van Haaren
patent: 5224006 (1993-06-01), MacKenzie et al.
patent: 5594398 (1997-01-01), Marcou et al.
patent: 5600524 (1997-02-01), Neiger et al.
patent: 5805397 (1998-09-01), MacKenzie
patent: 6040967 (2000-03-01), DiSalvo
patent: 624

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pivot point reset lockout mechanism for a ground for fault... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pivot point reset lockout mechanism for a ground for fault..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pivot point reset lockout mechanism for a ground for fault... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3311184

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.