Pumps – Expansible chamber type – Having pulsation dampening fluid receiving space
Patent
1990-03-06
1991-07-09
Smith, Leonard E.
Pumps
Expansible chamber type
Having pulsation dampening fluid receiving space
F04B 1100
Patent
active
050300709
DESCRIPTION:
BRIEF SUMMARY
BACKGROUND OF THE INVENTION
The present invention relates to a piston pump having at least one delivery plunger delivering pressure fluid from a suction chamber via a working chamber into a pressure port. Undesirable noises are caused by pressure pulsation in such pumps. For noise reduction, it is known from DE AS 28 24 239 to direct the pressure fluid from the working chamber to the pressure port via a collecting chamber which acts as a vibration damper.
To attenuate vibrations in the suction lines, it is known to use so-called "intake air vessels". However, these intake air vessels bear the shortcoming of necessitating an enormous overall size in order to safeguard an acceptable balance between the flow speed of the suction fluid and the delivered fluid. Furthermore, they become ineffective in the event of high-vacuum venting with subsequent pressure loading.
SUMMARY OF THE INVENTION
Therefore, the instant invention has for its object to accomplish noise attenuation for piston pumps. The invention is characterized by small space requirements, while having optimum damping abilities. The invention is accomplished by simple means at low costs and lends itself to ease of maintenance. The invention is suitable for use on pumps which are vacuum-vented prior to pressure loading.
This object is achieved, according to the present invention, by arranging elastic damping elements in the suction chamber. In this way, the pressure vibrations in the suction area of the pump are compensated directly where they are caused.
A preferred embodiment of this invention provides an elastic damping element that is formed by at least one deformable shaped part which contains at least one closed gas-filled compartment. In a particularly economical embodiment of this invention, the deformable shaped part is made of closed-cell foam material or rubber. In this way, the elastic means can be easily adapted to the existing suction chamber geometry.
Another embodiment of this invention provides an elastic damping element that is a movable wall which confines a gas chamber within the suction chamber. Thus, for instance, mounting of a diaphragm into the suction area permits effective noise attenuation in a simple fashion.
Another advisable embodiment of this invention arranges the damping element as an annularly closed rubber hose. This provides a large damping surface, and the damping element can be easily inserted and held in the suction chamber. For guiding purposes and for obtaining a defined deformability, the damping element cooperates with the ring filter element. The filter element is furnished with web-like retaining arms which receive the damping element partially embracing it at a radial distance. The webs are almost evenly spaced from each other, and the wall confining the suction chamber contributes to securing the damping element in position. This ensures ease of assembly, disassembly and quick exchangeability.
Further advantageous features, as well as the function of this invention, can be understood from the following description with reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
In the drawings
FIG. 1 shows the principal structure of a first embodiment of this invention,
FIG. 2 shows the design of a second embodiment of this invention,
FIG. 3 is a specific embodiment according to FIG. 1,
FIG. 4 is a full view of the damping element designed as a damping hose with connecting portions shown in partial cross-section; and
FIG. 5 is a cross-sectional view of the radial piston pump of FIG. 1.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIGS. 1 and 5 depicts schematically a radial piston pump 1 flanged to an electric motor 2. This radial piston pump 1 delivers fluid out of a reservoir into the pressure line 5 via the suction chamber 3 and the suction line 4.
To compensate for pulsation of the suction pressure, an elastically deformable shaped part 6 is arranged in the suction chamber 3 which is composed of foam material with closed air bubbles or gas bubbles. The geometry of this shap
REFERENCES:
patent: 2557247 (1990-10-01), Ziherl
Budecker Ludwig
David Anton
Guse Hans-Albrecht
Zutt Ulrich
Alfred Teves GmbH
Freay Charles G.
Lewis J. Gordon
Seitter Robert P.
Smith Leonard E.
LandOfFree
Piston pump does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Piston pump, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Piston pump will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-614488