Pipette sampling system

Measuring and testing – Sampler – sample handling – etc. – Withdrawing through conduit or receptacle wall

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06817256

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a pipette sampling system that allows for the removal of biological samples from capped containers. More specifically, the invention relates to a pipette tip having a piercing tip attached thereto.
BACKGROUND OF THE INVENTION
The elucidation of the complete genome sequences of a multitude of prokaryotic and eukaryotic organisms, including in particular, humans, has created the foundation for comprehensive genome analysis. Microarray gene-expression analysis, DNA diagnostics, and gene-based drug discovery, among other applications, rely on knowledge of and access to the genome sequence. The human genome contains approximately three billion base pairs contained within 24 separate chromosomes harboring an estimated total of 30,000 distinct genes, each of which has an average protein-encoding length of about 3,000 base pairs. Further, it has been established that the genetic content comprising the totality of genes identified in the human genome accounts for only about ten percent of the total nucleotide sequence. The function of the remaining portion of the genome is not yet fully understood.
Concomitant with the recent completion of the sequencing of the human genome, a large-scale global effort has evolved, which includes scientists from academic, private, and government research institutions, to understand the functions of all of the novel genes identified, the protein products they encode, and the complex interactions of these components. It is widely believed that this research will have an immediate and profound effect on future understanding of biochemical, genetic, and physiological processes, as well as on the diagnosis and treatment of medical conditions.
In particular, the technology of genotyping is developing at a rapid pace. This technology links various human disease and molecular traits to specific variations found in genes. These variations are defined in terms of a specific section of a gene that, when the sequence of nucleotides in that section changes, a corresponding defect in the protein or other material synthesized from the gene occurs. These portions of the gene are called single-nucleotide polymorphisms, or SNPs. SNPs can be used to predict if an individual is likely to develop a certain disease or if certain drugs will be effective when administered to the individual. This technology is of immense interest to pharmaceutical companies since the SNPs that control responses to a drug can be used to develop tests for the screening of patients prior to the prescription of a drug, which in turn could prove beneficial for the lowering of adverse drug reactions through the identification of susceptible individuals. Further, drug research will be made more efficient since knowledge of SNPs will help define new drugs and will help determine and document the therapeutic effectiveness of a given pharmaceutical compound.
Disclosure of the human genome sequence has created, virtually overnight, a plethora of methods for studying DNA, RNA, and other biological macromolecules such as protein. New whole-genome sequences from a wide variety of organisms are currently being generated at an increasingly high rate. Sequences and the expression patterns of genes are compared and contrasted for differences or similarities in an effort to further the understanding of human biology at genetic, biochemical, and physiological levels. The rapid generation, examination, analysis, and comparative analysis of whole-genome nucleic acid sequences from biological organisms in the art has been termed “genomics”.
The field of genomics can be divided into two major areas: (a) functional genomics, which attempts to interpret the functions of genes, including the investigation of gene expression and gene control and (b) comparative genomics, which studies the human genome through comparisons to the genomes of non-humans to gain insight into gene function and the evolution of genes, proteins, and organisms. Further, the related discipline of bioinformatics has developed concomitant with the expansion of genomics. This rapidly evolving field has been defined as one that integrates computational approaches for the manipulation and interpretation of the massive amount of nucleotide and protein sequence information currently being generated in the art. The development of new computers, software, and methods of data mining are critical components of this technology.
Although there are a multitude of steps comprising genomic analysis, it is often the case that the initial stages of genomics methodologies are the rate-limiting steps of the complete process. Nucleic acid purification is an example of one such process occurring in the initial stages of genomics methods that can affect the overall speed of the process. In the current art, the purification of nucleic acids is still largely carried out in small batches by trained technicians. Moreover, the technician is limited to processing a small number of samples per day and to producing lower yields of nucleic acids. This limits the ability to generate nucleotide sequence information, exposes the technician to infective agents, risks contamination of the samples, and wastes resources. Therefore, the purification of nucleic acids can represent an important rate-determining step of genomics methodologies.
One technique to increase the efficiency, productivity, and quality of biological macromolecule purification would be to employ automated methods. Several semi-automated methods of sample processing are available for the purification of nucleic acids, but still require human intervention and are not high-throughput. For example, U.S. Pat. No. 5,270,211 relates to a sample tube entry port for an automatic chemical analyzer that facilitates removal of samples by the pipette without exposing the operator to accidental contact with liquid materials in the draw tube.
Fully-automated systems are also available for the purification of nucleic acids but are not widely used due to their inflexibility and high cost. These systems are typically used in dedicated high-volume applications such as those found in large genetics testing laboratories that focus on the isolation and purification of DNA from particular types of samples. Fully-automated systems are generally not used in smaller laboratories where there typically exists a greater diversity of biological sample types from which nucleic acids are purified on a regular basis. Currently, fully-automated systems also suffer from the lack of flexibility in sample volume and typically are designed for small-volume samples. Further, the integrity, purity, concentration, and yield of the nucleic acids tends to be low.
Another initial stage in genomics methodologies is the sampling of biological samples. This step is sometimes referred to as ‘front-end’ in that it occurs early in the process and further, it can determine the rate of the whole process, particularly when large numbers of tubes must be sampled. Sampling a biological sample, such as blood, is typically performed by aspirating a defined volume of fluid from a container, typically an uncapped test tube. Racks of uncapped sample tubes are common to many clinical laboratories.
Since biological samples are frequently the source of hazardous materials (bacteria, viruses, fungi, biological toxins), they can pose dangers to laboratory technicians and health care workers in many different work settings, including clinical and research laboratories. Further, handling of samples by technicians can often lead to the inadvertent contamination of the biological samples from microorganisms contained on and in the environment around the technician. In other words, the technician must maintain caution and careful handling measures so as not to be contaminated from, or cause contamination to, the sample.
Once the caps are removed from the tubes, the samples are no longer sealed and contamination moving into the tube or contamination being released from the tube can occur inadvertently, even when using the most carefully

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pipette sampling system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pipette sampling system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pipette sampling system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3334212

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.