Pipeline processing machine with interactive stages operable...

Electrical computers and digital processing systems: processing – Instruction decoding – Decoding instruction to accommodate plural instruction...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C382S303000

Reexamination Certificate

active

06263422

ABSTRACT:

CROSS REFERENCE TO RELATED APPLICATIONS
The following U.S. patent application have subject matter related to this application: application Ser. No. 08/382,958, filed Feb. 2, 1995; Ser. No. 08/400,397, filed Mar. 7, 1995; Ser. No. 08/399,851 filed Mar. 7, 1995; Ser. No. 08/482,296, filed Jun. 7, 1995; Ser. No. 08/486,396, filed Jun. 7, 1995; Ser. No. 08/479,279, filed Jun. 7, 1995; Ser. No. 08/483,020, filed Jun. 7, 1995; Ser. No. 08/487,224, filed Jun. 7, 1995; Ser. No. 08/400,722, filed Mar. 7, 1995 (now U.S. Pat. No. 5,596,517); Ser. No. 08/400,723, filed Mar. 7, 1995 (now U.S. Pat. No. 5,594,678); Ser. No. 08/404,067, filed Mar. 14, 1995 (now U.S. Pat. No. 5,590,067); Ser. No. 08/567,555, filed Dec. 5, 1995 (now U.S. Pat. No. 5,617,458); Ser. No. 08/396,834, filed Mar. 1, 1995 (now U.S. Pat. No. 5,677,648); Ser. No. 08/473,813, filed Jun. 7, 1995; Ser. No. 08/484,456, filed Jun. 7, 1995; Ser. No. 08/476,814, filed Jun. 7, 1995; Ser. No. 08/481,561, filed Jun. 7, 1995; Ser. No. 08/482,381, filed Jun. 7, 1995; Ser. No. 08/479,910, filed Jun. 7, 1995; Ser. No. 08/475,729, filed Jun. 7, 1995; Ser. No. 08/484,578, filed Jun. 7, 1995; Ser. No. 08/473,615, filed Jun. 7, 1995; Ser. No. 08/487,356, filed Jun. 7, 1995; Ser. No. 08/487,134, filed Jun. 7, 1995; Ser. No. 08/481,772, filed Jun. 7, 1995; Ser. No. 08/481,785, filed Jun. 7, 1995; Ser. No. 08/486,908, filed Jun. 7, 1995; Ser. No. 08/486,034, filed Jun. 7, 1995; Ser. No. 08/487,740, filed Jun. 7, 1995; Ser. No. 08/488,348, filed Jun. 7, 1995; Ser. No. 08/484,170, filed Jun. 7, 1995; Ser. No. 08/516,038, filed Aug. 17, 1995; Ser. No. 08/399,810, filed Mar. 7, 1995 (now U.S. Pat. No. 5,625,571); Ser. No. 08/400,201, filed Mar. 7, 1995 (now U.S. Pat. No. 5,603,012); Ser. No. 08/400,215, filed Mar. 7, 1995; Ser. No. 08/400,072, filed Mar. 7, 1995; Ser. No. 08/402,602, filed Mar. 7, 1995; Ser. No. 08/400,206, filed Mar. 7, 1995; Ser. No. 08/400,151, filed Mar. 7, 1995; Ser. No. 08/400,202, filed Mar. 7, 1995; Ser. No. 08/400,398, filed Mar. 7, 1995; Ser. No. 08/400,161, filed Mar. 7, 1995; Ser. No. 08/400,141, filed Mar. 7, 1995; Ser. No. 08/400,211, filed Mar. 7, 1995; Ser. No. 08/400,331, filed Mar. 7, 1995; Ser. No. 08/400,207, filed Mar. 7, 1995; Ser. No. 08/399,898, filed Mar. 7, 1995; Ser. No. 08/399,665, filed Mar. 7, 1995; Ser. No. 08/400,058, filed Mar. 7, 1995; Ser. No. 08/399,800, filed Mar. 7, 1995; Ser. No. 08/399,801, filed Mar. 7, 1995; Ser. No. 08/399,799, filed Mar. 7, 1995; Ser. No. 08/474,222, filed Jun. 7, 1995; Ser. No. 08/486,481, filed Jun. 7, 1995; Ser. No. 08/474,231, filed Jun. 7, 1995; Ser. No. 08/474,830, filed Jun. 7, 1995; Ser. No. 08/474,220, filed Jun. 7, 1995; Ser. No. 08/473,868, filed Jun. 7, 1995; Ser. No. 08/474,603, filed Jun. 7, 1995; Ser. No. 08/485,242, filed Jun. 7, 1995; Ser. No. 08/477,048, filed Jun. 7, 1995; and Ser. No. 08/485,744, filed Jun. 7, 1995.
This application is a divisional application of British Application Ser. No. 9405914.4 filed Mar. 24, 1994. This application also claims priority under the International Convention based upon EPO Application No. 92306038.8 filed Jun. 30, 1992.
INTRODUCTION
The present invention is directed to improvements in methods and apparatus for decompression which operates to decompress and/or decode a plurality of differently encoded input signals. The illustrative embodiment chosen for description hereinafter relates to the decoding of a plurality of encoded picture standards. More specifically, this embodiment relates to the decoding of any one of the well known standards known as JPEG, MPEG and H.261.
A serial pipeline processing system of the present invention comprises a single two-wire bus used for carrying unique and specialized interactive interfacing tokens, in the form of control tokens and data tokens, to a plurality of adaptive decompression circuits and the like positioned as a reconfigurable pipeline processor.
PRIOR ART
One prior art system is described in U.S. Pat. No. 5,216,724. The apparatus comprises a plurality of compute modules, in a preferred embodiment, for a total of four compute modules coupled in parallel. Each of the compute modules has a processor, dual port memory, scratch-pad memory, and an arbitration mechanism. A first bus couples the compute modules and a host processor. The device comprises a shared memory which is coupled to the host processor and to the compute modules with a second bus.
U.S. Pat. No. 4,785,349 discloses a full motion color digital video signal that is compressed, formatted for transmission, recorded on compact disc media and decoded at conventional video frame rates. During compression, regions of a frame are individually analyzed to select optimum fill coding methods specific to each region. Region decoding time estimates are made to optimize compression thresholds. Region descriptive codes conveying the size and locations of the regions are grouped together in a first segment of a data stream. Region fill codes conveying pixel amplitude indications for the regions are grouped together according to fill code type and placed in other segments of the data stream. The data stream segments are individually variable length coded according to their respective statistical distributions and formatted to form data frames. The number of bytes per frame is withered by the addition of auxiliary data determined by a reverse frame sequence analysis to provide an average number selected to minimize pauses of the compact disc during playback, thereby avoiding unpredictable seek mode latency periods characteristic of compact discs. A decoder includes a variable length decoder responsive to statistical information in the code stream for separately variable length decoding individual segments of the data stream. Region location data is derived from region descriptive data and applied with region fill codes to a plurality of region specific decoders selected by detection of the fill code type (e.g., relative, absolute, dyad and DPCM) and decoded region pixels are stored in a bit map for subsequent display.
U.S. Pat. No. 4,922,341 discloses a method for scene-model-assisted reduction of image data for digital television signals, whereby a picture signal supplied at time is to be coded, whereby a predecessor frame from a scene already coded at time t-1 is present in an image store as a reference, and whereby the frame-to-frame information is adaptively acquired quad-tree division structure. Upon initialization of the system, a uniform, prescribed gray scale value or picture half-tone expressed as a defined luminance value is written into the image store of a coder at the transmitter and in the image store of a decoder at the receiver store, in the same way for all picture elements (pixels). Both the image store in the coder as well as the image store in the decoder are each operated with feed back to themselves in a manner such that the content of the image store in the coder and decoder can be read out in blocks of variable size, can be amplified with a factor greater than or less than 1 of the luminance and can be written back into the image store with shifted addresses, whereby the blocks of variable size are organized according to a known quad tree data structure.
U.S. Pat. No. 5,122,875 discloses an apparatus for encoding/decoding an HDTV signal. The apparatus includes a compression circuit responsive to high definition video source signals for providing hierarchically layered codewords CW representing compressed video data and associated codewords T, defining the types of data represented by the codewords CW. A priority selection circuit, responsive to the codewords CW and T, parses the codewords CW into high and low priority codeword sequences wherein the high and low priority codeword sequences correspond to compressed video data of relatively greater and lesser importance to image reproduction respectively. A transport processor, responsive to the high and low priority codeword sequences, forms high and low priority transport blocks of high and low priority codewords, respectively. Each transport block i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pipeline processing machine with interactive stages operable... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pipeline processing machine with interactive stages operable..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pipeline processing machine with interactive stages operable... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2499840

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.