Pipeline processing for data channels

Multiplex communications – Communication over free space – Combining or distributing information via code word channels...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S333000, C370S342000, C455S522000

Reexamination Certificate

active

06512757

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to processing a plurality of data channels using a pipeline structure, e.g., for a power control and measurement for communications channels in a CDMA communications system.
BACKGROUND OF THE INVENTION
In the past, the processing speed of computers and computer systems has already been significantly increased. However, there is still need for ever higher processing capabilities. For example, today's mobile telecommunications systems are required to handle a potentially very large number of subscribers, which need to be serviced with a limited number of communication channels. Highly complex transmission and channel access schemes are employed for providing services, requiring very high computation capabilities.
A class of transmission schemes provides transmission of a large number of communication channels containing voice or data signals via the same transmission medium. Here, different channels are transmitted, e.g. in a radio frequency band, in such a way that they overlap in the time domain as well as in the frequency domain. A well-known access scheme of this class is CDMA (Code Division Multiple Access).
In CDMA, since all channels are transmitted together, it is required that each individual communication channel signal is distinguishable from other communication channel signals. Therefore, each communication signal is individually encoded with one or more unique spreading codes, as it is well known in the art. To compensate different spreading gains and assure a good quality of service, the transmission power of each spread channel is then individually adjusted, i.e., power weighted. Thereafter, the spread communication channels are combined into a single transmission signal to be transmitted, e.g., via the air interface.
After receiving the transmission signal at a receiving station, e.g., a mobile station, the communication channel signal intended for this station may be extracted by performing a decoding process, e.g., with the same code sequence as it was used for spreading the communication channel signal before transmission.
Mobile stations talking via the same transmission path, e.g., a CDMA channel, will be located indoors or outdoors and at different distances from an associated base station. Consequently, the transmission signal will be attenuated differently and some mobile stations will encounter difficulties in recovering information from the transmission signal intended for them.
Similarly, to avoid the above reception difficulties, as indicated above, the communication channel signals intended for remote or occluded receiving stations need to be amplified to a higher degree than the remaining communication channel signals for receiving stations located closer to the sending station. Hence, an adaptive adjustment of the transmission power of each channel needs to be performed, depending on the attenuation or quality of the radio signal received at the respective mobile station.
Therefore, prior to combining individually spread communication channels into a single transmission signal, each communication channel signal is individually weighed in order to increase or decrease its relative power in the combined transmission signal. The weighting factor for adjusting the power of a communication channel signal may be determined from the receiving quality at the corresponding receiving station.
Suppose, a target receiving quality has been chosen. If the actual receiving quality is below the target quality, the sender is instructed to increase its transmit power, e.g. increase the weighting factor. On the other hand, if the receiving quality is above the target quality, a decrease of the weighting factor may be ordered.
This command (up or down command) may be transmitted from the receiving station to the sending station, enabling the sending station to individually adjust the power levels of each communication channel signal before combining all communication channels into the transmission signal.
Further, in order to adjust power levels of communication channels for facilitating an adequate power control, the overall power of each individual power control communication channel may be measured.
In a CDMA base station, where a large number of channels is to be combined, very high frequencies are encountered and further, time delays for transmission need to be kept at a minimum. Therefore, since the power control, i.e. the weight adjustment, must be performed on all individual communication channels, demands on a hardware solution are high.
It is known in computing, in order to attain a higher data throughput, to parallelize processing tasks. Hence, it is conceivable to perform a power control and measurement for all channels individually and in parallel. However, since in a telecommunications system potentially very large numbers of communication channels needs to be serviced, associated hardware costs will be extremely high.
SUMMARY OF THE INVENTION
It is therefore object of the invention to process a plurality of data channels at reduced hardware costs, while maintaining a high processing speed and short time delay.
This object of the invention is solved by an apparatus for processing a plurality of data channels with unique channel addresses using a pipeline structure having plurality of pipeline stages, comprising addressing means for transmitting channel addresses between the pipeline stages, including time delay means associated with each of the pipeline stages, for time delaying the transmission of the channel addresses between pipeline stages, memory means included into at least one of the pipeline stages and connected to the addressing means, for storing, at a plurality of locations corresponding to respective channel addresses, data associated with each of the plurality of data channels, and processing means included into at least one of the pipeline stages, for processing at least data stored in the memory means at locations specified by the channel addresses.
The object of the invention is further solved by an apparatus for processing a plurality of data channels with unique channel addresses using a pipeline structure having plurality of pipeline stages, comprising addressing means for transmitting channel addresses between the pipeline stages, including time delay means associated with each of the pipeline stages, for time delaying the transmission of the channel addresses between pipeline stages, memory means included into at least one of the pipeline stages and connected to the addressing means, for storing, at a plurality of locations corresponding to respective channel addresses, data associated with each of the plurality of data channels, the memory means including a current weight storing unit storing a current weight associated with each of the data channels and a step size storing unit storing a step size associated with each of the data channels, and processing means included into at least one of the pipeline stages, for processing at least data stored in the memory means at locations specified by the channel addresses, including adjusting means for incrementing or decrementing the current weight by the step size in accordance with an indicator indicating whether the channel power is to be increased or decreased.
The object of the invention is also solved by and apparatus for processing a plurality of data channels with unique channel addresses using a pipeline structure having plurality of pipeline stages, comprising addressing means for transmitting channel addresses between the pipeline stages, including time delay means associated with each of the pipeline stages, for time delaying the transmission of the channel addresses between pipeline stages, memory means included into at least one of the pipeline stages and connected to the addressing means, for storing, at a plurality of locations corresponding to respective channel addresses, data associated with each of the plurality of data channels, the memory means including a first storage unit for storing a current weight associa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pipeline processing for data channels does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pipeline processing for data channels, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pipeline processing for data channels will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3028709

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.