Pilot control valve for controlling a reciprocating pump

Pumps – Motor driven – Fluid motor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C417S390000, C417S399000

Reexamination Certificate

active

06183217

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a pilot control valve that achieves a continuous and consistent pumping rate for a reciprocating pump. More particularly, the pilot control valve of the present invention relates to a pilot control valve that controls the flow of control fluid to a piston, valve or the like to drive a reciprocating device such as a chemical or glycol injection pump. The pilot control valve of the present invention controls such flow through a pneumatic valve mechanism with the use of a reduced number of moving parts and a single movable valve member.
2. General Background
There are various devices known for controlling reciprocating pumps. Previous designs have used a separate pump and pilot assembly such as that illustrated in U.S. Pat. No. 2,990,910, issued to G. O. Kimmell and entitled “Apparatus And Method For Circulating Controlling Liquids and Gas-Liquid Systems”. Other devices have used springs, nuts, bolts or other components for the backstroke of the piston, but these components often fatigue or fail under fluid pressure. These prior art devices were overcome by the pilot control valve inventions disclosed in U.S. Pat. No. 4,593,712, issued to Anthony J. Quartana, III, entitled “Pilot Control Valve” which issued on Jun. 10, 1986, and U.S. Pat. No. 4,776,773, issued to Anthony J. Quartana, III, entitled “Pilot Control Valve for Controlling the Pumping Rate of an Injection Pump” which issued on Oct. 11, 1988.
The pilot control valve disclosed in U.S. Pat. No. 4,593,712 includes a first or “leading” valve member and a second or “following” valve member coaxially positioned with respect to each other within a valve body to control the communication of control fluid to a piston included with an injection pump to initiate movement of the piston between its first or “downstroke” position and its second or “upstroke” position to drive the injection pump. In response to control fluid supplied to the valve body, the first valve member moves from its first or “downstroke” position to its second or “upstroke” position. The movement of the first valve member to its second position allows the control fluid to act on the second valve member causing it to move from its first or “downstroke” position to its second or “upstroke” position. When the second valve member reaches its second position, the piston of the injection pump returns to its first position. The return of the piston to its first position allows control fluid to cause the movement of the first valve member from its second position to its first position which then allows control fluid to cause the movement of the second valve member from its second position to its first position. As the second valve member returns to its first position, control fluid causes the piston and a rod attached to the piston to move upwardly toward its second position. As the piston moves upwardly, the end of the rod on the piston engages the first valve member and drives the first valve member upwardly to its second position and the process is repeated over and over. In this manner, the reciprocating pump achieves a consistent pumping rate.
The pilot control valve disclosed in U.S. Pat. No. 4,776,773 includes a first or “leading” valve member movable between a first and second position, but eliminates the use of a second or “following” valve member coaxially positioned with respect to the first valve member. Instead, a second or slide valve member is loosely mounted on the first valve member and is movable between a first or “downstroke” position, an intermediate position and a second or “upstroke” position. When in its first position, the second valve member allows communication of the control fluid to the piston included with the injection pump to initiate movement of the piston from its first or “downstroke” position to its second or “upstroke” position. As the piston moves upwardly, the end of the rod attached to the piston engages a surface of the first valve member to initiate its movement from its first to its second position. As the first valve member moves from its first to its second position, the first valve member moves the second valve member from its first position to its intermediate position and then to its second position. When in its intermediate position, the second valve member blocks the communication of control fluid to the piston and the piston is no longer driven upward. Finally, in its second position, the second valve member allows control fluid to return the piston to its first position and to move the first valve member from its second position back to its first position. This process is repeated over and over to achieve a consistent pumping rate.
Although the pilot control valves disclosed in U.S. Pat. No. 4,593,712 and U.S. Pat. No. 4,776,773 overcome the prior art devices, there is still a need in the industry for a pilot control valve that further reduces the number of moving parts in the valve mechanism to improve reliability and resistance to wear. The pilot control valve of the present invention improves the reliability of the prior art pilot control valves by providing a pilot control valve that controls the communication of control fluid to a piston included with a reciprocating device using pneumatic valve control rather than a mechanical control mechanism and requiring a reduced number of moving parts. The pilot control valve of the present invention eliminates the use of the second coaxial valve member disclosed in U.S. Pat. No. 4,593,712 and the second slide valve member disclosed in U.S. Pat. No. 4,776,773 and provides for the complete control of the upstroke and backstroke of the piston in a pneumatic manner with a single movable valve member.
SUMMARY OF THE INVENTION
The pilot control valve of the present invention relates to a pilot control valve that changes the directional flow of control fluid to a piston, valve or the like to drive a reciprocating device such as a chemical or glycol injection pump. The pilot control valve is positioned above the piston section included with the reciprocating device to provide linear, reciprocating force using compressible or non-compressible pressurized control fluid to drive the piston. The pilot control valve of the present invention controls the communication of the control fluid to the piston using pneumatic valve control using a reduced number of moving parts. The number of moving parts of the present invention is reduced over the prior art devices because only a single movable valve member is used.
More specifically, the pilot control valve of the present invention includes a valve member shiftable within a valve body between a first or “downstroke” position and a second or “upstroke” position. When in its first position, the valve member allows communication of control fluid supplied to the valve body to the lower surface of the piston to initiate movement of the piston from its first position to its second position. As the piston reaches its second position, a vent in a rod attached to the piston allows control fluid acting on the valve member retaining the valve member in its first position to depressurize and vent from the valve body. As such control fluid is depressurized and vented, pressurized control fluid acts on the valve member to initiate movement of the valve member from its first position to its second position. In its second position, the valve member precludes communication of control fluid to the lower surface of the piston and allows communication of control fluid to the upper surface of the piston causing the piston to return to its first position. As the piston returns to its first position, the vent in the piston rod allows the pressurized control fluid acting on the upper surface of the piston to act on the valve member to move the valve member back to its first position. In its first position, the valve member precludes communication of the control fluid to the upper surface of the piston and allows communication of the control fluid to the lower surface of the pis

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pilot control valve for controlling a reciprocating pump does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pilot control valve for controlling a reciprocating pump, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pilot control valve for controlling a reciprocating pump will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2603032

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.