Pigmented hot melt inks

Compositions: coating or plastic – Coating or plastic compositions – Marking

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06702884

ABSTRACT:

BACKGROUND
This invention relates to hot melt inks containing pigments.
Hot melt inks are solid at room temperature and liquid at temperatures above room temperature. Hot melt inks can be used, for example, in digital printing methods. During printing, the ink is heated until it becomes liquid which is then ejected through a printhead onto a substrate. The ink solidifies on the substrate.
Dyes have usually been preferred for use in hot melt inks, since they completely dissolve in the medium. Unlike pigments, they typically do not settle to the bottom of a reservoir or agglomerate to block the printhead. However, pigments have many advantages over dyes. One advantage is that pigments are more heat-stable than dyes. This can be especially important when hot melt inks are heated to an elevated temperature during printing. Another advantage is that pigments can be less likely to bleed or sublime than dyes. Therefore, there is a need for pigmented hot melt inks in which pigments are stabilized from settling or agglomerating.
SUMMARY
The present invention is based on the discovery of a hot melt ink composition that has good stability.
In one aspect, a hot melt ink composition includes a vehicle, a pigment having a surface including a modifying group, and a polymeric dispersant including a group which associates with the modifying group and a backbone which is miscible with the vehicle.
In another aspect, a hot melt ink composition includes a vehicle, a pigment having a volatile content at least 10% (e.g., at least 12%, or in a range of 14% to 22%), and a polymeric dispersant including a group which associates with the pigment and a backbone which is miscible with the vehicle.
In yet another aspect, a hot melt ink composition includes a vehicle that has a melting point at a temperature ranging from 50° C. to 150° C., a pigment that has a volatile content at least 10% and a modified surface including an oxygen-containing functionality, and a polymeric dispersant that includes a copolymer including a polyamine and a fatty acid.
A vehicle is the color-carrying medium of the ink. The vehicle can include one or more materials such as a wax or resin. The vehicle remains in a solid state at the room temperature (20° C. to 25° C.) and melts into a liquid state at temperatures above its melting point. The melting point of the vehicle can be a temperature ranging from 50° C. to 150° C. (e.g., from 65° C. to 100° C. or from 80° C. to 90° C.).
A modifying group is a heteroatom-containing group, such as, for example, hydroxyl, carboxyl, ester, ether, amino, amido, or thiol. In some embodiments, the modifying group can include an oxygen-containing functionality, such as a carboxyl or phenol group.
A polymeric dispersant includes a group that associates with the pigment or the modifying group and a backbone that is miscible with the vehicle. The polymeric dispersant can assist in stabilizing a pigment in a hot melt ink composition. By stabilizing the pigment, the pigment is less likely to agglomerate or settle in the hot melt ink composition. An example of the polymeric dispersant can include a copolymer including a polyamine and a fatty acid. The polymeric dispersant has a group that associates with the pigment or the modifying group by, for example, a non-covalent interaction, including a coulombic interaction, a hydrogen-bonding interaction, a hydrophobic interaction, or a Lewis acid-Lewis base interaction.
A pigment has a volatile content relating to a percentage of oxygen-containing functionalities on the surface of the pigment. The oxygen-containing functionalities can include, but are not limited to, carboxyl, phenol, and those contributing to a low pH value. A volatile content of a pigment can be measured by heating an unheated mass of a pigment in a sealed crucible to 950° C., and determining the postheated mass of the remaining material in the crucible. The volatile content is calculated as (1−(postheated mass/unheated mass))×100%.
In yet another aspect, a process for preparing a hot melt ink composition includes heating the hot melt ink and filtering the heated hot melt ink through a one micron filter.
The details of one or more embodiments are set forth in the description below. Other features, objects, and advantages will be apparent from the description and from the claims.
DETAILED DESCRIPTION
A pigmented hot melt ink includes a vehicle, a pigment having a surface including a modifying group, and a dispersant including a group that associates with the modifying group or the pigment and a backbone that is miscible with the vehicle.
The vehicle may include a wax. The wax provides the ink with the property of being solid at the room temperature, but liquid at an elevated temperature. The ink can melt between 50° C. and 150° C., between 65° C. and 100° C., or preferably, between 80° C. and 90° C. The pigmented hot melt ink should contain enough wax that the ink, as a whole, is a hot melt material. The vehicle may also contain a combination of waxes. The ink contains about 50% to about 90% by weight wax, e.g., about 55% to about 75% by weight wax.
Examples of waxes include, but are not limited to, stearic acid; succinic acid; beeswax; candelilla wax; carnauba wax; alkylene oxide adducts of alkyl alcohols; phosphate esters of alkyl alcohols; alpha alkyl omega hydroxy poly (oxyethylene); allyl nonanoate; allyl octanoate; allyl sorbate; allyl tiglate; rice bran wax; paraffin wax; microcrystalline wax; synthetic paraffin wax; synthetic paraffin and succinic derivatives; petroleum wax; synthetic petroleum wax; cocoa butter; diacetyl tartaric acid esters of mono and diglycerides; mono and diglycerides; alpha butyl omega hydroxypoly(oxyethylene)poly(oxypropylene); calcium pantothenate; fatty acids; organic esters of fatty acids; calcium salts of fatty acids; mono & diesters of fatty acids; sucrose fatty acid esters; calcium stearoly-2-lactylate; Japan wax; lanolin; glyceryl hydroxydecanoate; glyceryl hydroxydodecanoate; oxidatively refined montan wax fatty acids; polyhydric alcohol diesters; oleic acids; palmitic acid; d-pantothenamide; polyethylene glycol (400) dioleate; polyethylene glycol (MW 200-9,500); polyethylene (MW 200-21,000); oxidized polyethylene; polyglycerol esters of fatty acids; polyglyceryl phthalate ester of coconut oil fatty acids; shellac wax; hydroxylated soybean oil fatty acids; stearyl alcohol; and tallow and its derivatives.
The wax can be a beeswax, a carnauba wax, a paraffin wax, a synthetic paraffin wax or a microcrystaline wax.
The vehicle may include one or more resins. The resin provides the ink with a desired viscosity, thermal stability, flexibility, and adhesion properties. The ink should include enough resin to achieve the desired viscosity, stability, flexibility, and adhesion. The ink contains about 0% to about 50% by weight resin, e.g., about 20% to about 30% by weight resin.
Examples of resins include, but are not limited to, acacia (gum arabic); gum ghatti; guar gum; locust (carob) bean gum; karaya gum (sterculia gum); gum tragacanth; chicle; highly stabilized rosin ester; tall oil; manila copais; corn gluten; coumarone-indene resins; crown gum; damar gum; p, alpha-dimethylstyrene; gum elemi; ethylene oxide polymer and its adducts; ethylene oxide/propylene oxide copolymer and its adducts; galbanum resin; gellan gum; ghatti gum; gluten gum; gualac gum; guarana gum; heptyl paraben; cellulose resins, including methyl and hydroxypropyl; hydroxypropyl methylcellulose resins; isobutylene-isoprene copolymer; mastic gum; oat gum; opopanax gum; polyacrylamide; modified polyacrylamide resin; polylimonene; polyisobutylene (min. MW 37,000); polymaleic acid; polyoxyethylene derivatives; polypropylene glycol (MW 1200-3000); polyvinyl acetate; polyvinyl alcohol; polyvinyl polypyrrolidone; polyvinyl pyrrolidone; rosin, adduct with fumaric acid, pentaerythritol ester; rosin, gum, glycerol ester; rosin, gum or wood, pentaerythritol ester; rosin, gum or wood, partially hydrogenated, glycerol ester; rosin, gum or wood, partially hydrogenated, pentaerythritol ester

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pigmented hot melt inks does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pigmented hot melt inks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pigmented hot melt inks will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3200283

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.