Piezoelectric resonator with layered electrodes

Electrical generator or motor structure – Non-dynamoelectric – Piezoelectric elements and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06291931

ABSTRACT:

CROSS-REFERENCES TO RELATED APPLICATIONS
Not Applicable
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable
REFERENCE TO A “MICROFICHE APPENDIX”
Not Applicable
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention pertains to piezoelectric resonators used to control oscillator frequencies and used in filter circuits. More particularly this invention pertains to resonators which utilize a layer of piezoelectric material sandwiched between two conducting electrodes to provide a mechanical, i.e. acoustic, and an electrical resonance. For use at microwave frequencies, the electrodes typically are fabricated on the piezoelectric layer by desposition techniques.
2. Description of the Prior Art
FIG. 1
depicts a resonator
11
of the prior art consisting of a layer of piezoelectric material
12
having conducting electrodes
13
and
14
located on its top and bottom surfaces respectively. In the prior art the electrodes are usually made of gold or other suitable metal having high electrical conductivity. A voltage applied between the electrodes produces an electric field within the piezoelectric layer, which electric field interacts with the mechanical or acoustic resonances of the device to provide an electrical resonance in response to a sinusoidal voltage applied to the electrodes.
Such piezoelectric resonators exhibit both series and parallel electrical resonances at their terminals, which resonances can be used in the synthesis of bandpass filters in various circuit configurations. The frequency increment between the series and parallel resonances is an important factor in determining the bandwidth that can be exhibited by the filter. In general the greater the frequency increment between the series and parallel resonances, the greater the bandwidth that may be exhibited by the filter. One of the factors that determines the size of the frequency increment is the piezoelectric coupling coefficient, K
2
e, referred to as “effective K squared” and defined in “High-Q Microwave Acoustic Resonators and Filters” IEEE Trans. on Microwave Theory and Techniques, Vol. 41, No. 12, December 1993, pp. 2139-2146 and in “Development of Miniature Filters for Wireless Applications”, IEEE Trans. Microwave Theory and Techniques, Vol. 43, No. 12, December 1993, pp. 2933-2939.
The fabrication of piezoelectric resonators for use at microwave frequencies is well known in the prior art. See the descriptions in the specification of U.S. Pat. No. 5,894,647, and see the references to prior art cited therein. See also “Microwave Acoustic Resonators and Filters,” by Lakin, Kline and McCarron, IEEE Trans. on Microwave Theory and Techniques, Vol. 41, No. 12, December 1993, p. 2139; Guttwein, Ballato and Lukaszek, U.S. Pat. No. 3,694,677; and “Acoustic Bulk Wave Composite Resonators”, Applied Physics Letters 38(3) by Lakin and Wang, Feb. 1, 1981.
FIG. 2
depicts a resonator
21
of the prior art consisting of a layer of piezoelectric material
22
and conducting electrodes
23
and
24
, all of which are supported on a substrate
25
by intervening layers
26
of different materials. The resonator depicted in
FIG. 2
is referred to herein as a solidly mounted resonator (“SMR”). By suitable selection of the materials in the intervening layers, and of the thicknesses of the intervening layers, these intervening layers can be made to present a low or a high acoustic impedance to resonator
21
at the interface
27
between electrode
24
and intervening layers
26
. The intervening layers typically are one-quarter wave-length in thickness and alternate having high and low acoustic impedances. The fabrication of such resonators upon such intervening layers is well known in the art. See e.g. U.S. Pat. Nos. 3,414,832 and 5,373,268 and 5,821,833 and see “Solidly Mounted Resonators and Filters”, 1995 IEEE Proc. Ultrasonics Symposium, pp. 905-908.
For methods of analysis and further descriptions of reflectors and resonators see Lakin, “Solidly Mounted Resonators and Filters, 1995 IEEE Proc. Ultrasonics Symposium, pp. 905-908 and Lakin et al. “Development of Miniature Filters for Wireless Applications”, IEEE Trans. on Microwave Theory and Techniques, Vol. 43, No. 12, December 1996, pp. 2933-2939.
The electrical characteristics of such piezoelectric resonators are also affected by various loss mechanisms, two of which are the electrical losses arising from the electrical currents flowing within the electrodes and the mechanical losses associated with the acoustic waves, i.e. mechanical deformations, within the piezoelectric layer and within the conducting electrodes. For most applications, resonators having lower losses will provide better performance and can be used to obtain filters having wider bandwidths.
BRIEF SUMMARY OF THE INVENTION
The present invention uses electrodes consisting of layers of different material to increase the effective piezoelectric coupling coefficient of the resonators, and to reduce the losses in the resonators, thereby increasing the bandwidths that can be achieved by filters using these resonators. One layer of the material that is used in each electrode has a high acoustic impedance, the effect of which is to redistribute the acoustic deformations within the resonator so as to increase the coupling between the electric fields between the electrodes and the piezoelectric material. The second layer of material in each electrode is a layer having relatively high electrical conductivity which reduces the electrical conductivity losses that otherwise would be exhibited by the electrode.


REFERENCES:
patent: 4363993 (1982-12-01), Nishigaki et al.
patent: 4468582 (1984-08-01), Fujiwara et al.
patent: 4489250 (1984-12-01), Ebata et al.
patent: 5325012 (1994-06-01), Sato et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Piezoelectric resonator with layered electrodes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Piezoelectric resonator with layered electrodes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Piezoelectric resonator with layered electrodes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2446007

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.