Piezoelectric film element and ink-jet recording head using...

Incremental printing of symbolic information – Ink jet – Ejector mechanism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S070000, C310S358000, C310S328000, C310S330000

Reexamination Certificate

active

06328433

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a structure of a piezoelectric film which composes a piezoelectric film element. More particularly, this invention relates to a structure of a piezoelectric film element which is preferable for a drive source for discharging ink for an ink-jet recording head.
2. Description of the Related Art
An ink-jet recording head of an on-demand type comprises a piezoelectric film element which functions as a drive source for discharging ink. This piezoelectric film element comprises a piezoelectric film made of piezoelectric ceramics, and an upper electrode and a lower electrode to hold the piezoelectric film in between. The application of a desired electric field to the piezoelectric film element causes changes in volume, while the application of pressure causes changes in voltages. Since many piezoelectric ceramics with a perovskite crystal structure remarkably exhibit the above-described action, such piezoelectric ceramics are used as materials for the piezoelectric film. The piezoelectric film element provided with such a crystal structure is disclosed in, for example, Applied Physics Letters, 1991, Vol. 58, No. 11, p.p. 1161-1163. A prior art example of the ink-jet recording head using the piezoelectric film element is disclosed in, for example, a specification of U.S. patent application Ser. No. 5,265,315.
Since the ink-jet recording head in these days are being required to achieve higher precision printing, the volume of a pressure room is getting smaller. In order to make the pressure room with the small volume discharge ink in an appropriate amount, it is necessary to cause higher pressure in the piezoelectric film element. This pressure is generated as accumulation of very little strains in individual crystal structures. Accordingly, it is supposed that as the thickness of the piezoelectric film is increased, higher pressure can be obtained. Moreover, by increasing the thickness of the piezoelectric film, it is possible to prevent the lowering of piezoelectric properties due to the generation of a strong electric field in the piezoelectric film. Therefore, attempts are being made to increase the thickness of the piezoelectric film by various film forming methods.
A piezoelectric film which is generally used has: a two-component composition containing lead zirconate titanate (hereinafter sometimes referred to as “PZT”) as a principal component; or a three-component composition prepared by adding a third component of PZT to the two-component composition. As a method for forming the piezoelectric film, for example, “JOURNAL OF APPLIED PHYSICS” (Vol. 83, Number 4, Feb. 15, 1998, p.p. 2202-2208) discloses the technique to form, by a sol-gel method, a film of Pb(Zr
0.30
Ti
0.70
)O
3
(PZT30/70) over an electrode made of platinum/titanium in the temperature environment of 510° C.
This sol-gel method is the method of giving dehydration treatment to a hydrate complex (sol) of a hydroxide of a metal component of a PZT type piezoelectric film to turn it into a gel and of heating and burning the gel to adjust an inorganic oxide (piezoelectric film). This method makes it possible to form the film by repeating the coating, drying and pyrolyzing of a precursor of the PZT type piezoelectric film for several times until a specified thickness is obtained. Accordingly, this method is excellent in the composition control and is preferred for the adjustment of the thickness of the piezoelectric film. Moreover, patterning using a photoetching step is also possible and has actually been applied to an ink-jet recording head.
For example, when a PZT film with a thickness of about 0.4 &mgr;m is to be formed by the sol-gel method, the step of spin coating, drying and pyrolyzing a sol for the PZT film is repeated for several times (for example, four times) and the step of RTA thermal treatment (final annealing) is then taken, thereby obtaining the desired PZT film.
However, the inventors of this invention have found that if the piezoelectric film is formed by the above-described sol-gel method and if an attempt is made to increase the film thickness to a certain degree, residual stress affects the inside of the piezoelectric film and cracks may be sometimes generated on the surface of the film when crystal grains are caused to grow in the pyrolyzing step and the RTA step. It is assumed that this phenomenon is caused because heat stresses act upon each other in a complicated manner when a molecular structure which is in the amorphous state in the pyrolyzing step or the RTA step of the piezoelectric film is turned into a minute crystal structure. Accordingly, it has been impossible to form a piezoelectric film with a large film thickness beyond a certain degree and technical limitations have been imposed upon the achievement of high precision of the ink-jet recording head.
SUMMARY OF THE INVENTION
It is an object of this invention to provide a piezoelectric film element having structural characteristics that make it possible to prevent the generation of cracks in the step of manufacturing the piezoelectric film element and to increase the thickness of a piezoelectric film, and also to provide a method for manufacturing such a piezoelectric film element. It is another object of this invention to provide an ink-jet recording head which has excellent ink discharging properties and to provide a method for manufacturing such an ink-let recording head. It is a further object of this invention to provide an ink-jet printer which has excellent ink discharging properties.
In order to attain the above-described objects, a piezoelectric film element of this invention comprises a dislocation layer in a piezoelectric film. This “dislocation layer” is the layer of which atoms in crystals are partly defective, which is caused by lattice defects. It is desirable that a dislocation density in the dislocation layer be within the range of 10
13
/cm
2
to 10
14
/cm
2
. This is because the structural strength of the piezoelectric film lowers if the dislocation density is more than 10
14
/cm
2
, while stresses caused within the film may not be relaxed if the dislocation density is less than 10
13
/cm
2
. It is also desirable that the dislocation layer be formed with a thickness ranging from 5 nm to 15 nm, more preferably 10 nm, in a thickness direction of the piezoelectric film. This is because the stresses caused in the film may not be relaxed if the thickness is less than 5 nm, while the structural strength of the piezoelectric film lowers if the thickness is more than 15 nm. It is particularly desirable that the piezoelectric film have a plurality of dislocation layers in its film thickness direction and that the dislocation layers be formed in a manner such that the distances between the adjacent dislocation layers are the same or gradually become shorter from the lower electrode side to the upper electrode side. As stresses caused at the time of formation of the piezoelectric film strongly affect the surface of the piezoelectric film (on the upper electrode side), the above-described structure causes the piezoelectric film to contain many dislocation layers in the vicinity of the surface of the piezoelectric film. Accordingly, the stresses caused at the time of formation of the piezoelectric film can be effectively relaxed. Therefore, it is possible to increase the thickness of the piezoelectric film. Moreover, it is possible to improve the yield of the piezoelectric film element, thereby reducing manufacturing costs.
The piezoelectric film element of this invention can be manufactured by a sol-gel method. Specifically speaking, the step of giving thermal treatment to a first film formed with a sol for forming a piezoelectric film precursor applied not less than once, and then giving thermal treatment to a second film formed with the sol applied over the first film not less than once, thereby forming a dislocation layer in the second film in the vicinity of an interface between the first film and the second film, is repeated for m times, and the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Piezoelectric film element and ink-jet recording head using... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Piezoelectric film element and ink-jet recording head using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Piezoelectric film element and ink-jet recording head using... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2587713

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.