Apparel – Head coverings – With forced air circulator
Reexamination Certificate
2002-03-26
2004-06-22
Lindsey, Rodney M. (Department: 3765)
Apparel
Head coverings
With forced air circulator
Reexamination Certificate
active
06751807
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates generally to protective garments, and particularly to garments incorporating a personal portable ventilation system. The invention has particular application for protective garments that include a head cover providing an air-tight space around the head of the wearer.
Ventilated protective garments are used in many applications. One common usage is in the field of surgery. Surgical gowns have long been used to cover and protect a surgeon and associated medical personnel in an operating room. The typical surgical gown is formed from non-woven fabrics and is generally in the nature of an overcoat protecting or covering the medical personnel from the neck down. In order to help maintain a sterile environment, the medical personnel also wear a breathing mask over the mouth and nose. The breathing mask is constructed in a manner to filter inhaled and exhaled air from the medical personnel.
As the art of surgery has developed, the requirements for maintaining a sterile environment in the operating room has increased. In addition, a new demand has arisen for protecting the medical personnel. One specific motivation for this need has been the advent of diseases, such as AIDS, which can be communicated by exposure to bodily fluids. Accordingly, surgical gowns have been developed that include head sections that cover the face and head of the medical personnel. The contemporary operating room attendant is covered virtually from head to foot which helps to reduce the risk of contamination of the surgical environment and patient, as well as contamination of the person within the protective garment.
Of course, once the head of the medical personnel is covered, ventilation becomes an issue. A variety of personnel air supply and filtration systems have been devised for use with protective garments, such as surgical gowns. In some instances, a mouthpiece and air supply, akin to underwater diving apparatus, have been implemented. In other systems, a helmet or headpiece is worn by the medical personnel in which the helmet carries the ventilation components. In one typical installation, the ventilation component is a fan and a series of ducts that direct air flow to the mouth and nose of the medical personnel.
One problem associated with most ventilation systems is that they are heavy and bulky. The weight of a typical ventilation fan system can become uncomfortable for the person wearing the protective garment, regardless of how the ventilation fan system is supported. The weight becomes even more problematic for ventilation systems incorporated into or supported by a helmet worn by the person. The weight of the ventilation system is a common source of neck fatigue. Moreover, the weight poses an inertia or balance problem as the person moves his/her head.
A further problem associated with the known ventilation systems is that the systems are noisy. This noise problem is particularly compounded when a helmet-mounted ventilation fan, for instance, is situated near the ears of the wearer. The typical fan-based ventilation system also experiences heat build-up due to friction in the moving components of the system.
Consequently, there remains a need for a more optimum ventilation system for use with protective garments. The ventilation system should be lighter weight and less noisy than prior ventilation systems. While improvements in these two areas are significant, an optimum ventilation system would also operate more efficiently and provide better air flow than prior known ventilation systems.
SUMMARY OF INVENTION
In view of the shortcoming of prior ventilation systems, the present invention contemplates a ventilation system that comprises piezo fan elements. Thus, one embodiment of the invention provides a ventilated garment comprising a head cover defining an airspace for receiving the head of a wearer therein, an air-moving system including a piezo fan assembly including a number of piezo elements, each having an oscillating blade operable to generate airflow, and means for supporting said piezo fan assembly within said airspace. In one embodiment, the means for supporting includes a helmet to be worn on the head of the wearer. In another embodiment, the means for supporting said piezo fan assembly includes at least one piezo element carried by the head cover.
In accordance with one feature of the invention, each piezo fan assembly includes a plurality of piezo elements. The plurality of piezo elements can be supported within a common housing. In certain embodiments, a first number of the plurality of piezo elements are oriented within the housing to generate airflow in a first direction, while a second number of the piezo elements is oriented to generate airflow in a second direction different from the first direction. In addition, another feature of the invention allows the first number of piezo elements to be different from the second number so that different airflow rates can be realized at different outlets.
In one feature of certain embodiments, the piezo fan assembly includes a housing defining a common inlet opening and multiple outlet ducts. The outlet ducts can be arranged so that discharge airflow is generally perpendicular to the inlet airflow through the inlet opening. In one aspect of the invention, the piezo elements can be arranged within the housing so that they are disposed within a corresponding duct. Moreover, the piezo elements can be arranged so that their respective inlet ends are aligned with the inlet opening.
In some embodiments, the piezo fan assembly includes a power supply, which may be part of the assembly or may be independent of the garment. The power supply can include a battery carried by the same means for supporting the fan assembly. Alternatively, the fan assembly can be electrically connected to an external power supply, such as a battery pack that is worn on the torso of the person.
In a further aspect of the invention, a ventilated garment is provided that comprises a head cover defining an airspace for receiving the head of a wearer therein, a ventilation component having a housing defining an air inlet and at least two air outlets and an air-moving member disposed between said inlet and said outlets, and means for supporting the ventilation component within said airspace. One feature of this aspect of the invention is that airflow in multiple directions can be achieved from a common air-moving member. In the preferred embodiments, the air-moving member includes at least one piezo fan component. Preferably, an air-moving member can be associated with each of the at least two air outlets. In certain embodiments, a first number of piezo fan components can be associated with one of the air outlets, and a second number of piezo fan components can be associated with another of the air outlets.
One object of the invention is to provide a lightweight air-moving component that is particularly well-suited for use in a personal ventilation system. One benefit afforded by the present invention is that the air-moving component is not only lightweight, it is also quiet in operation.
A further benefit is that the invention allows for greater flexibility in achieving directed air flow within a garment, such as a protective garment. Other objects and benefits of the invention can be discerned from the following written description and accompanying figures.
REFERENCES:
patent: 4498851 (1985-02-01), Kolm et al.
patent: 4512933 (1985-04-01), Harden
patent: 4554683 (1985-11-01), Wong
patent: 4780062 (1988-10-01), Yamada et al.
patent: 4834619 (1989-05-01), Walton
patent: 5008582 (1991-04-01), Tanuma et al.
patent: 5104430 (1992-04-01), Her-Mou
patent: 5123114 (1992-06-01), Desanti
patent: 5256159 (1993-10-01), Newman
patent: 5283914 (1994-02-01), James
patent: 5565148 (1996-10-01), Pendergrass, Jr.
patent: 5577495 (1996-11-01), Murphy
patent: 5592936 (1997-01-01), Thomas et al.
patent: 5814135 (1998-09-01), Weinberg
patent: 5861703 (1999-01-01), Losinski
patent: 5887281 (1999-03-01), Green et al.
patent: 5918593 (
Clupper Christian H.
Diaz Rudy
Klotz Conrad Lee
DePuy Orthopaedics, Inc.
Lindsey Rodney M.
Maginot Moore & Beck
LandOfFree
Piezo fan for ventilated garment does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Piezo fan for ventilated garment, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Piezo fan for ventilated garment will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3344393