Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems
Reexamination Certificate
2001-02-06
2003-05-20
Jeffery, John A. (Department: 3742)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Electrical therapeutic systems
C607S108000
Reexamination Certificate
active
06567696
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a physiotherapeutic device and more particularly but not exclusively to devices for providing both electrotherapeutic and thermotherapeutic treatment in combination.
BACKGROUND OF THE INVENTION
The use of heat and cold for therapeutic purposes is well known. Hot water bags, ice packs, and the like have commonly been used to alleviate pain, to stimulate the flow of blood, or to restrict the flow of blood beneath the surface of the skin. One of the problems with hot water bags is that the temperature steadily decreases during use, thereby necessitating refilling them with a heated liquid. Ice packs steadily increase in temperature when applied to the skin, and ice must accordingly be added from time to time if a cold temperature is to be maintained. It is also difficult to regulate the temperature of an ice pack or a hot water bottle such that it is neither too cold nor too hot when applied to the skin.
A number of therapeutic devices have been developed which employ Peltier thermoelectric units for providing heat or cold. Such devices include switches which allow reversing the polarity of the current passing through the thermoelectric units, thereby determining whether a hot or a cold stimulus is to be applied thereby. U.S. Pat. No. 3,207,159 discloses such a device which includes a probe for heating or cooling selected cutaneous points. U.S. Pat. Nos. 4,585,002 and 4,860,748 disclose devices which employ microprocessors for controlling the duration and/or intensity of heat and cold generated by Peltier thermoelectric units. U.S. Pat. Nos. 3,133,539, 3,168,895, 4,640,284 and 4,915,108 disclose various other therapeutic devices for applying heat or cold to the skin.
Therapeutic electrical stimulation of soft body tissue is well known. These devices which produce transcutaneous electrical nerve stimulation are known as TENS devices and are used to both relieve chronic pain and to produce muscle building stimulation.
As mentioned above, it is also well known to treat injured and weakened soft body tissue through the use of the topical application of heating atop the body tissue to be treated.
Specifically, devices beginning with the earliest of the resistive wire heating pads are well known in the art to accomplish the individual function of heating. The more recently developed TENS units are well known for therapeutic electrical stimulation of muscles and soft body tissue. A more complex therapeutic device for providing either one of heating and cooling of the skin and underlying body tissue is disclosed in U.S. Pat. No. 5,097,828 invented by Deutsch. This device includes a handle and a thermally conductive head which utilizes Peltier effect devices for heating or cooling a contact plate within the head. The contact plate may also be connected to a high-voltage source for electrical stimulation.
In U.S. Pat. No. 5,336,255, Kanare et al. have disclosed an electrical stimulation and heating or cooling pack which includes a nonconductive pouch and straps for positioning and holding the pouch against a body part. Flexible conductive patches attached to the pouch are connectable to a remote pulse generator. An electrically conductive adhesive gel pad is also provided for coupling the conductive patch to the body part. By this arrangement, both heating or cooling and electrical stimulation of a body part are provided.
U.S. Pat. No. 5,601,618 discloses a very simple device for providing combination electrical stimulation or TENS-type soft body tissue stimulation and the simultaneous heating of the body tissue. The device is hermetically sealed and extremely compact and portable, relying upon low current dry battery power for heating and the utilization of double-sided adhesive conductive electrodes which adhesively attach to the skin area over the soft body tissue for supporting the device against the skin during use.
A combination soft body tissue stimulator and heating device includes a thin, flat, molded flexible plastic pad, one side of which defines a working surface. The molded pad has a plurality or an array of spaced separate conductive areas each having an exposed conductive surface, being generally coplanar with the working surface. When the device is properly installed, each conductive area makes electrical contact with, and receives support from, a separate disposable double-sided flexible adhesive electrode attached to the skin over the soft tissue. The array of electrodes adhesively attached to the skin is generally aligned with the array of conductive areas of the pad so that only the adhesive attachment between the conductive areas and the electrodes is required to hold the device in place against the skin. A resistive heating element is embedded within the pad, which pad is generally coextensive with and electrically isolated from the array of conductive areas on the side thereof away from the working surface. The conductive areas are connectable to a pulsed electrical current and the heating element is connectable to a D.C. battery supply for simultaneous stimulation and heating of any desired soft body tissue area.
A particular use for treatments of this type is in relation to post-surgical trauma and trauma resulting from, for example, sports-related injuries, this being a common occurrence with which patients must regularly contend. The trauma often manifests itself in the form of swelling which results from the accumulation of bodily fluids underlying the skin adjacent to the site of the trauma. Such swelling not only results in patient discomfort, but also inhibits recovery, as it results in an increased application of pressure against the tissue and surrounding nerve and organ structures. Furthermore, such swelling reduces patient mobility when the trauma is of an orthopedic nature. For all of the foregoing reasons, it is a common objective of health care professionals to reduce the accumulation of undesired fluid underlying the site of patient trauma as soon as possible. To date, such fluid reducing measures have typically encompassed the application of cold compresses such as ice packs for prescribed periods of time to the site of the trauma, followed by the application of hot compresses.
As discussed above, non-powered cooling solutions such as cold compresses are oftentimes initially too cold for the patient to comfortably tolerate and, as a result, the patient is unable to tolerate the cooling effects of the compresses for the prescribed period of time. Furthermore, because the compresses remove heat from the body, the temperature of the compresses themselves progressively increases, thereby diminishing their temperature reducing affects. Longer periods of cooling can be provided by increasing the amount of coolant such as ice in the cold compress; however, such practices increase the size of the compress, thereby adversely impacting upon the compresses' ability to conform to the site of the trauma and compromising their effectiveness in removing heat from the site of the injury.
An optimal regimen for reducing tissue swelling provides for treatment with cold compresses for up to about 72 hours followed by warm compress treatment for a period of about 10-14 days. Furthermore, because water has a high specific gravity, the provision of additional quantities of ice in the cold compress further increases the downward pressure exerted against the trauma site, thereby negating to some extent the benefits afforded by cold compress treatment. Further problems arise as a result of the considerable time demands of personnel at health care facilities, as the cold and hot compresses used in such facilities often times cannot be properly monitored and changed prior to loss of their effectiveness, particularly during overnight and prolonged stays.
As a result of all of the foregoing deficiencies in the prior art, patient recovery from physical trauma surgery and inflammation is often prolonged, resulting in increased patient discomfort, lack of motility in instances of orthopedic trauma, and prolonged periods
Segev Isaac
Voznesensky Boris
G. E. Ehrlich Ltd.
Jeffery John A.
MediSeb Ltd.
LandOfFree
Physiotherapeutic device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Physiotherapeutic device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Physiotherapeutic device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3019585