Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai
Reexamination Certificate
2000-04-20
2004-01-20
Fay, Zohreh (Department: 1614)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Carbohydrate doai
C514S012200, C514S059000, C514S060000, C424S663000, C424S677000, C424S679000, C424S680000, C424S681000, C424S682000
Reexamination Certificate
active
06680305
ABSTRACT:
INTRODUCTION
1. Technical Field
The technical field of this invention is plasma substitute solutions.
2. Background of the Invention
Physiologically acceptable solutions find use in a variety of different applications in the medical, biomedical research and related fields. For example, physiologically acceptable solutions find use as plasma substitutes in surgical applications which require the replacement of significant amounts of blood plasma volume. Such applications include treatments for blood lost during surgery or trauma, or when a tissue, organ, group of organs or an entire subject needs to be maintained at a hypothermic or frozen state. Such applications also include applications in which a patient's blood is flowed through an external device, such as a cardiopulmonary bypass machine, where the extra circulatory volume space resulting from attachment of the patient's circulatory system to the device must be filled with a compatible blood substitute, i.e. blood volume expander.
Physiologically acceptable solutions suitable for use as plasma expanders/substitutes must be able to mix freely with blood without unacceptably compromising its components, such as creating precipitates which significantly block flow in small vessels, destroying an unacceptable portion of its formed elements (cells, platelets), introducing agents or creating water, ionic or molecular imbalances destructive to body cells and tissues, or causing harmful physiologic activities such as inappropriate acceleration or inhibition of heartbeat, nerve conduction or muscle contraction, and the like.
The first plasma substitute solutions employed were derived from mammalian blood. Although such solutions have been used with success, because such solutions are derived from natural blood, they can contain various pathogenic substances, such as viral pathogens such as HIV, Hepatitis B, and other pathogens, e.g. prions such as those associated with Cruetzfeldt-Jakob disease, and the like. As such, use of blood substituted and plasma substitute solutions derived from natural blood are not free of complication.
As such, a variety of synthetic blood and plasma substitute solutions have been developed which are prepared from non-blood derived components. Although synthetic plasma like solutions have found increasing use in a variety of applications, no single solution has proved suitable for use in all potential applications.
Accordingly, there is continued interest in the development of new physiologically acceptable aqueous solutions that are suitable for use as plasma substitutes. Of particular interest is the development of solutions that are suitable for use in hypothermic surgical applications, such as cardiac surgery and the like. Also of interest is the development of solutions that are terminally heat sterilizable.
Relevant Literature
Various physiologically acceptable solutions, particularly blood substitute solutions, and methods for their use are described in U.S. Pat. Nos. : RE 34,077; 3,937,821; 4,001,401; 4,061,736; 4,216,205; 4,663,166; 4,812,310; 4,908,350; 4,923,442; 4,927,806; 5,082,831; 5,084,377; 5,130,230; 5,171,526; 5,210,083; 5,274,001; 5,374,624; and 5,407,428.
Additional references describing physiologically acceptable solutions, including blood substitute solutions include: Bishop et al., Transplantation (1978) 25:235-239; Messmer et al., Characteristics, Effects and Side-Effects of Plasma Substitutes, pp 51-70; Rosenberg, Proc.12th Congr. Int. Soc. Blood Transf.(1969); Spahn, Anesth. Anaig. (1994) 78:1000-1021; Biomedical Advances In Aging (1990)(Plenum Press) Chapter 19; Wagner et al., Clin. Pharm. (1993) 12:335; ATCC Catalogue of Bacteria & Bacteriophages (1992) p 486; and 06-3874-R8-Rev. May (1987) Abbott Laboratories, North Chicago, Ill. 60064, USA.
Additional references describing various applications of such solutions, including hypothermic applications, include: Bailes et al., Cryobiology (1990) 27:615-696(pp 622-623); Belzer et al., Transplantation (1985) 39:118-121; Collins, Transplantation Proceedings (1977) 9:1529; Fischer et al., Transplantation (1985) 39:122; Kallerhoff et al., Transplantation (1985) 39:485; Leavitt et al.,
FASB J
. (1990) 4: A963; Ross et al., Transplantation (1976) 21:498; Segall et al.
FASB J
. (1991) 5:A396; Smith, Proc. Royal Soc. (1956) 145: 395; Waitz et al.,
FASB J
. (1991) 5.
Lehninger, Biochemistry (2
nd
Ed., 1975), pp 829ff provides a review of blood and its constituents.
SUMMARY OF THE INVENTION
Physiologically acceptable aqueous solutions and methods for their use are provided. The subject solutions comprise: electrolytes; a dynamic buffering system and an oncotic agent; where the solutions do not comprise a conventional biological buffer. The solutions find use in a variety of applications, particularly in applications in which at least of portion of a host's blood volume is replaced with a blood substitute solution.
DESCRIPTION OF THE SPECIFIC EMBODIMENTS
Physiologically acceptable aqueous solutions and methods for their use are provided. The subject solutions include: electrolytes; a dynamic buffering system and oncotic agents; where the solutions may further optionally include at least one of a sugar and bicarbonate and will include at least one of magnesium or sugar. The solutions may be used in a variety of applications and are particularly suited for use in applications where at least a portion of a host's blood is replaced with a substitute solution. In further describing the invention, the aqueous solutions themselves will be described first in greater detail followed by a discussion of various representative applications in which the solutions find use.
Before the subject invention is further described, it is to be understood that the invention is not limited to the particular embodiments of the invention described below, as variations of the particular embodiments may be made and still fall within the scope of the appended claims. It is also to be understood that the terminology employed is for the purpose of describing particular embodiments, and is not intended to be limiting. Instead, the scope of the present invention will be established by the appended claims.
It must be noted that as used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural reference unless the context clearly dictates otherwise. Unless defined otherwise all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs.
The aqueous solutions of the subject invention are physiologically acceptable, by which is meant that the solutions may be introduced into the vasculature of a host without inherently causing a toxic reaction. The solutions will have a pH ranging from about 4 to 10, usually from about 4.5 to 9 and more usually from about 5 to 8.5.
The solutions will comprise a plurality of electrolytes, including: sodium ion, chloride ion, potassium ion and calcium ion, and optionally magnesium ion. The sodium ion concentration of the solutions will range from about 70 to 160, usually from about 110to 150, and in some embodiments from 130 to 150 mM. The concentration of chloride ion in the solution will range from about 70 to 170, usually from about 80 to 160, more usually from about 100 to 135 and in some embodiments from about 110 to 125 mM. The concentration of potassium ion will range from the physiological to subphysiological, where by “physiological” is meant from about 3.5 to 5, usually from about 4 to 5 mM, and by “subphysiological” is meant from about 0 to 3.5, usually from about 2 to 3 mM, where in many embodiments of the invention, the amount of potassium ion will range from about 1 to 5, usually from about 2-3 mM, where in certain embodiments, the amount of potassium ion may be higher than 5 mM and range as high as about 5.5 mM or higher, but will usually not exceed about 5.5. mM. The solutions will also comprise calcium ion in an amount ranging from about 0.5 to 6.0 mM, and in many em
Segall Judith M.
Segall Paul E.
Sternberg Hal
Waitz Harold D.
BioTime, Inc.
Bozicevic, Field & Francis
Fay Zohreh
Field Bret E.
Kwon Brian-Yong
LandOfFree
Physiologically acceptable aqueous solutions and methods for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Physiologically acceptable aqueous solutions and methods for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Physiologically acceptable aqueous solutions and methods for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3239047