Drug – bio-affecting and body treating compositions – Topical body preparation containing solid synthetic organic... – Ophthalmic preparation
Reexamination Certificate
2001-08-13
2003-04-01
Fay, Zohreh (Department: 1614)
Drug, bio-affecting and body treating compositions
Topical body preparation containing solid synthetic organic...
Ophthalmic preparation
C514S912000
Reexamination Certificate
active
06540990
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a newly identified pharmacological treatment to treat age related diseases or disorders of the both the anterior and posterior segment of the eye or to potentiate best visual acuity. Specifically, the invention provides methods for treatment and prevention of congenital and acquired color vision blindness, treatment of ocular hypertension and glaucoma, prevention of the progression of myopia, treatment of strabismus or squint, potentiation of best visual acuity, neuro-protection, treatment of aberrations secondary to pupil dilation by topical administration of acetylcholine esterase inhibitors.
BACKGROUND OF THE INVENTION
The image of an infinite distant object will fall in front of the retina in myopia (nearsightedness) on the retina in emmetropia (normal sightedness) and behind the retina in hyperopia (farsightedness), when these eyes are exerting zero accommodation. The emmetropic eye forms sharp retinal imagers of distant objects with the lens of the eye in relaxed accommodation. This ideal optical human condition of emmetropia is possible as a result of a function of corneal curvature and axial length of the eye and takes into account that parallel rays of light travel from air will bend when passing through the cornea surface and into the liquid environment of the eye. Normally, the emmetrope can see distant scenes sharply and, in addition, can see objects held close to the eye without awareness of any focusing by the eye. The process of focusing upon a near object, called accommodation, is accomplished by the muscles of the ciliary body of the eye contracting to vary the shape of the crystalline lens of the eye. To see at a distance, the ciliary muscles are relaxed; to see nearby, the ciliary body contracts to reshape the lens. The amount of accommodation exerted from the relaxed state of the muscles of the ciliary body to the contracted state of the ciliary muscles (i.e., to full accommodation) of the eye is termed the amplitude of accommodation. When the eye is fully accommodated, the point in space which is focused upon the retina is called the near point of the eye, or the nearest point of distinct vision.
Accommodation is measured in diopters. A diopter is defined as 1/the distance in meters to the near point of vision. In both emmetropic individuals and myopic individuals, who have been treated by corneal surgery, the ability to accommodate is gradually lost with age. In fact, the ability to reshape the lens to focus upon a near point may be completely lost after age 40 years. This decrease in the amplitude of accommodation and the consequent loss of near vision is called presbyopia and is thought to be a normal part of the aging process. The inverse relationship between age and the amplitude of accommodation can be seen in Table 1.
TABLE 1
Relationship Between Age, Amplitude of
Accommodation and Near Vision for Emmetrope
Amplitude of
Near Point
Accommodation
For Emmetrope
Age
(Diopters)
(cm)
10
14.0
7.0
20
10.0
10.0
30
7.0
14.2
40
4.5
22.2
45
3.5
28.5
50
2.5
40.0
55
1.75
57.0
60
1.00
100.0
65
0.50
200.0
70
0.25
400.0
0
Physiologically, accommodation is under the influence of the parasympathetic nervous system and occurs through the chemical action of acetycholine on muscle fibers of the ciliary body. Contraction of the ciliary body muscles decreases the tension of the lens ligaments, which allows the lens to focus at near point.
Acetylcholine, when working on the eye or other smooth muscles of the body is regulated by cholinesterase enzyme which breaks down acetylcholine and thus turns off its parasympathetic effect on muscles. In an effort to correct presbyopia, the effect of acetylcholine on the muscles of the eye could be increased either by adding an acetylcholine like drug such as pilocarpine, or by blocking the breakdown of acetylcholine with a drug which inhibits the natural cholinesterase (e.g., a cholinesterase inhibitor).
There have been problems with the first approach; When pilocarpine hydrochloride, an acetylcholine like drug, sold as SALAGER® (MGI Pharma, Minnetonka, Minn.), is applied to an emmetropic eye, the increased parasymathetic effect leads to enhanced near vision but at the sacrifice of distant vision. The emmetropic eye becomes myopic as a consequence of this adverse side effect acetylcholine treatment to correct presbyopia has not been effective. Likewise, the second approach, the use of cholinesterase inhibitors, has been unsuccessful because of similar side effects from the cholinesterase drugs used in current concentrations. No other pharmacological agents have been found to restore near vision in an individual with presbyopia. Thus presbyopia is considered untreatable with current pharmacological agents.
A diminished visual acuity or total loss of vision may result from a number of eye diseases or disorders caused by dysfunction of tissues or structures in the anterior region of the eye and/or posterior region of the eye. The eye is divided anatomically into an anterior and posterior segment. The anterior segment includes the cornea, anterior chamber, iris and ciliary body (anterior choroid), posterior chamber and crystalline lens. The posterior segment includes the retina with optic nerve, choroid (posterior choroid) and vitreous. Some of the examples of eye disorders resulting from the pathologic conditions of structures in the anterior segment of the eye are dry eye syndrome, keratitis or corneal dystrophy, cataracts, and glaucoma. The disease or disorders of the posterior segment of the eye in general are retinal or choroidal vascular diseases or hereditary diseases such as Lebers Congenital Amaurosis. The posterior portion of the eyeball supports the retina, choroid and associated tissues.
So far certain treatments, including the topical application of acetylcholine esterase (AChE) inhibitor, have been used with some success to treat ophthalmic disorders caused by dysfunction of eye muscles in the anterior region of the eye. Acetylcholine, when working on the eye or other smooth muscles of the body is regulated by the natural cholinesterase enzyme which breaks down acetylcholine and thus turns off its parasympathetic effect on muscles. The effect of acetylcholine on the muscles of the eye could be increased either by adding an acetylcholine like drug such as pilocarpine, or by blocking the breakdown of acetylcholine with an AChE drug which inhibits the natural cholinesterase (e.g., a cholinesterase inhibitor). However, the administration of acetylcholine (pilocarpine) results in the side effect of nearsightedness, thus acetylcholine treatment to correct presbyopia has not been effective.
A diminished visual activity may result due to pathologic conditions of tissues or structures located n the anterior segment of the eye or in the posterior region of the eye. Age related macular degeneration (AMD) is one of the specific diseases associated with the posterior portion of the eyeball and is the leading cause of blindness among older people. AMD results in damage to the macula, a small circular area in the center of the retina. Because the macular is the area which enables one to discern small details and to read or drive, its deterioration may bring about diminished visual acuity and even blindness. The retina contains two forms of light receiving cells, rods and cones, that change light into electrical signals. The brain then converts these signals into the images that we see. The macula is rich in cone cells, which give us our central vision. People with AMD suffer deterioration of central vision but usually retain peripheral sight.
There are several types of AMD. The “dry” (non-exudative) type accounts for about 90% of AMD cases. The wet (exudative) form afflicts only about 10% of AMD patients. However, the wet form is a more serious disease than the dry form and is responsible for about 90% of the instances of profound visual loss resulting from the disease. Wet AMD often starts abruptly with the development of tiny, abnormal, leaky blood vessels termed CNVs (chorodial new
Fay Zohreh
Kumar Nanda P. B. A.
McNichol, Jr. William J.
ReedSmith LLP
LandOfFree
Physiological method of improving vision does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Physiological method of improving vision, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Physiological method of improving vision will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3107733