Radiation imagery chemistry: process – composition – or product th – Liquid crystal process – composition – or product
Reexamination Certificate
2001-03-16
2004-08-31
Angebranndt, Martin (Department: 1756)
Radiation imagery chemistry: process, composition, or product th
Liquid crystal process, composition, or product
C430S945000, C430S270210, C250S474100, C250S372000, C348S086000
Reexamination Certificate
active
06783901
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to polymeric films comprising photosensitive, particularly photochromic, organic compounds, which films exhibit a high response to exposure to electromagnetic radiation, particularly visible light, and to information storage devices incorporating such films.
As used herein, the unqualified expression “light” refers generally to electromagnetic radiation in the UV-visible region, and “colour” refers generally to the spectral properties within the UV-visible region of light or of an article.
BACKGROUND ART
WO-A-94/24785 discloses an information storage device comprising a photosensitive film for application to a small region of a monitor such as a television screen. The photosensitive material in the film may be photochromic. The photosensitive film may be metallised with gold or silver on its reverse side, both to guard the photosensitive material from light falling on the reverse side of the film, and to reflect light falling on the obverse side of the film but passing through the film without interacting with the photosensitive material back towards the photosensitive material. The film may be provided on its obverse side with a lens to focus light falling on the film and thus to yield a sharp image.
In some information-collecting applications, an image consisting of discrete spots (as opposed to a continuous image) may be found suitable. In such a case the obverse side of the film may advantageously be provided with a perforated mask, for example of cardboard, as focusing device instead of a plastics lens. The mask may be markedly thicker than the film, so that the photosensitive material is activated only by light falling on the storage device at a near-perpendicular angle to the film. The desirability of employing a photosensitive material of high sensitivity will be appreciated, namely in order that a large colour difference between exposed and unexposed areas can be obtained in a short exposure time. However, there may be problems in reading the information which has been collected in a storage device of such construction. The reading step involves illumination with light of wavelength characteristic of the photosensitive material (unexposed or exposed) and analysis of the reflected light. If the photosensitive film is unreflective (either because the film has no backing or because the film has light-absorbent properties), the amount of reflected light is low. If the film is highly reflective, for example if it is metallised on its reverse side, the amount of reflected light is so great that it is difficult to distinguish between exposed and unexposed areas. The present invention addresses such problems.
DISCLOSURE OF THE INVENTION
According to the invention, there is provided a plastics film filled with a filler and having diffuse reflective properties, the film bearing a coating which contains a photosensitive organic compound.
The plastics film may be of conventional polymeric material such as regenerated cellulose, cellulose acetate or polyamide, although a polyester such as poly(ethylene terephthalate) may be preferred. The polymer desirably exhibits high transparency at relevant wavelengths.
The filler is preferably a pigment, more preferably a white pigment. Titanium dioxide (titania) is a particularly preferred white pigment for use when the photosensitive compound is chosen to react on exposure to visible light, because of its good diffuse reflective properties to visible light. Other common white pigments such as barium sulphate tend to confer a relatively high degree of specular reflection to visible light on a filled film, and they are accordingly less preferred. On the other hand, if the compound is chosen to react on exposure to UV light, barium sulphate may be preferred to titania, because barium sulphate exhibits better diffuse reflectivity than titania to UV light. Other kinds of filler, for example polymer beads, may be employed. If an aerated or microvoided polymeric film is employed, the filler is generally a gas such as air. A decisive factor is that the refractive index of the filler particles (or voids) should differ from that of the polymer of the film so as to confer diffuse reflective properties on the film. The size and shape of the particles (or voids) may also be influential. The nature of the filler and filled film are not thought to affect the photochemistry of the photosensitive compound and accordingly are not thought to modify the nature of the information collecting step.
The diffuse and specular reflective properties of a film may be measured by conventional techniques, for example using a UV-visible spectrometer equipped with an integrating sphere for reflectance measurement and an optional light trap for removal of the specularly-reflected component. At relevant wavelengths, the plastics film preferably exhibits a diffuse reflectivity of at least 80%, more preferably at least 85%, and a specular reflectivity of no more than 5%, preferably of no more than 3% (all percentages being based on the reflectivity of a standard barium sulphate plate).
The coating may comprise more than one photosensitive organic compound. The photosensitive compound is preferably a photochromic compound. Photochromic organic compounds are known and include the photochromic fulgides and diarylethenes. Such compounds change colour when exposed to light whose wavelength corresponds to a spectral absorption peak of the compound. This colour change is the result of isomerisation, and it is reversed if the isomerised compound is exposed to light whose wavelength corresponds to a spectral absorption peak of the isomerised compound. The efficiency of the isomerisation reaction differs for different compounds, depending on the efficiency with which the molecule absorbs photons and on the efficiency with which the molecule isomerises after absorption of a photon. The invention preferably employs a photochromic compound which reacts with a high degree of efficiency, most preferably in both the forward direction and the reverse direction. The photochromic compound preferably has a low tendency to thermochromism (colour change resulting from heat-induced isomerisation). The photochromic compound preferably strongly absorbs light from one or more of the RGB guns in a conventional television. A preferred compound is the fulgide Aberchrome 670 (Trade Mark of Aberchromics Ltd.) (CAS Registry No. 94856-25-4), which exhibits a rapid colour change (is rapidly bleached) by exposure to light of wavelength around 530 nm (corresponding to the green gun).
The coating preferably comprises a polymer in which the photosensitive compound is dispersed at molecular level. In general, any polymer compatible with the compound may be used. It will be appreciated that polymers which absorb light at relevant wavelengths, or which may react with the compound, or in which the compound may crystallise, will in general be unsuitable. An olefinic polymer such as polystyrene may generally be found suitable. The polymer of the coating desirably exhibits high transparency at relevant wavelengths. Coating compositions may be made for example by dissolving the polymer and compound in a solvent, and such compositions may be applied to the film by conventional techniques such as gravure printing or other printing methods.
The film is preferably metallised on its reverse side. Metallisation serves primarily to guard the photosensitive compound from light falling on the reverse side of the film and secondarily to provide a reflective surface from which light passing through the film can be reflected back towards the photosensitive compound through the diffuse reflective film in the information collecting step. The efficiency of light collection may in consequence be increased by some 10 or 20 percent.
The invention further provides an information storage device which comprises in combination the film described hereinabove and a perforated mask disposed on the coating-bearing side of the film. The mask may for example be perforated with holes of from 1 to 5 mm di
Hawkins Michael
Newbitt David Michael
Angebranndt Martin
CPFilms Inc.
Howson and Howson
LandOfFree
Photosensitive plastics films and information storage devices does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Photosensitive plastics films and information storage devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Photosensitive plastics films and information storage devices will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3357607