Photoresist dispense arrangement by compensation for...

Coating apparatus – Control means responsive to a randomly occurring sensed... – Responsive to attribute – absence or presence of work

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C118S713000, C118S326000, C250S205000

Reexamination Certificate

active

06818064

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to semiconductor devices and their fabrication and more particularly to a method of applying photosensitive material to a semiconductor wafer.
BACKGROUND OF THE INVENTION
The electronics industry continues to rely upon advances in semiconductor technology to realize higher-functioning devices in more compact areas. For many applications, realizing higher-functioning devices requires integrating a large number of electronic devices into a single silicon wafer. As the number of electronic devices per given area of the silicon wafer increases, the manufacturing process becomes more difficult.
A large variety of semiconductor devices have been manufactured having various applications in numerous disciplines. Such silicon-based semiconductor devices include, among others, metal-oxide-semiconductor (MOS) transistors, such as p-channel MOS (PMOS), n-channel MOS (NMOS) and complimentary MOS (CMOS) transistors, bipolar transistors, and BiCMOS transistors. Each of these semiconductor devices generally includes a semiconductor substrate on which a number of active devices are formed. The particular structure of a given active device can vary between device types. For example, in MOS transistors, an active device generally includes source and drain regions and a gate electrode that modulates current between the source and drain regions.
Elements in semiconductor devices are typically formed in the silicon through the use of well-known deposition, photolithography and etching techniques. The processing of a silicon wafer typically includes a coating step in which a photoresist solution is applied to the wafer. The purpose of the coating step is to apply a uniform polymeric film of selected thickness onto the wafer. This technique is commonly known as spin coating, which involves dispensing the photoresist solution onto the wafer and rapidly spinning the wafer. Spinning the wafer serves to dry the photoresist into a solid or gel layer having the desired film thickness.
The dispensing step is performed by distributing photoresist solution over the entire wafer before the wafer is spun (static dispense) or by applying a small quantity of solution near the center of the wafer while spinning the wager to distribute the solution (dynamic dispense). During the dispensing step, it is desired to distribute the solution uniformly onto the wafer to allow the formation of a coat of uniform thickness during the spin step. The dispensing apparatus should be maintained at a pre-defined, relatively close distance from the wafer to prevent splashing of the solution. Advanced photoresist dispensing methods have varied wafer rotation speed during chemical delivery of the spin coating cycle in order to achieve uniform photoresist coatings with minimal loss in photoresist material. However, this approach has not always been sufficiently precise in forming the photoresist layer.
In an effort to improve these systems, a light source has been included in the system that is directed at the substrate so that light is reflected up for detection by a camera. Variations in the wafer surface lead to variations in the light reflected. When the camera senses that the substrate is dark (less light reflected up to the camera), more photoresist material is dispensed. The opposite is also true; less photoresist is dispensed if the light reflected off the substrate is too bright. However, the process for depositing photoresist is problematic when the light reflected from the substrate is too dim or the light appears washed out. Variations in wafer surface reflectivity have made it difficult to reproduce from one wafer lot to another, a photoresist layer on a wafer substrate that has a uniform thickness across the wafer surface while at the same time minimizing the required amount of photoresist being dispensed.
Accordingly, there has been a long-standing need for semiconductor manufacturing processes that can overcome the aforementioned disadvantages of the prior art.
SUMMARY OF THE INVENTION
In connection with the present invention, it has been discovered that significant advantages can be gained by precisely detecting when the photoresist material comes into contact with the wafer and using this detection to compensate for variations in substrate reflectivity. Variations in substrate reflectivity cause variations in the detection of the moment of initial photoresist deposition, leading to variations in photoresist layer thickness and uniformity across the wafer surface. The present invention will help to compensate for variations in wafer substrate reflectivity that will lead to photoresist coating on wafer substrates that is consistent from one wafer lot to another.
The present invention is exemplified in a number of implementations and applications, some of which are summarized below. According to an example embodiment, in the manufacture of a semiconductor device a method is provided for forming a layer over a semiconductor substrate that includes providing substrate illumination and then adjusting the illumination on the substrate. The method also includes controlling the dispensation of material over the substrate as a function of the adjusted illumination.
In another example embodiment, an apparatus for forming a layer on a semiconductor substrate is disclosed. The apparatus includes a device, such as a light, for illuminating a substrate and a mechanism for adjusting the illumination on the substrate, wherein the adjustment mechanism is coupled to the substrate illumination device. The apparatus also includes a controller for dispensation of a material over the substrate as a function of the adjusted illumination, wherein the controller is coupled to the adjustment mechanism.
The above summary of the present invention is not intended to describe each illustrated embodiment or every implementation of the present invention. The figures and detailed description that follow more particularly exemplify these embodiments.


REFERENCES:
patent: 5270797 (1993-12-01), Pollak et al.
patent: 5985357 (1999-11-01), Sanada
patent: 6248175 (2001-06-01), Subramanian et al.
patent: 6278809 (2001-08-01), Johnson et al.
patent: 6376013 (2002-04-01), Rangarajan et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Photoresist dispense arrangement by compensation for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Photoresist dispense arrangement by compensation for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Photoresist dispense arrangement by compensation for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3308033

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.