Photonic-crystal-rod optical amplifier with sealed-hole...

Optical: systems and elements – Optical amplifier – Optical fiber

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S051000, C385S126000

Reexamination Certificate

active

07835068

ABSTRACT:
A method and apparatus use a photonic-crystal fiber having a very large core while maintaining a single transverse mode. In some embodiments, the method and apparatus includes a photonic-crystal fiber or rod (PCF or PCR) optical device having a beam-expanding endcap formed, e.g., by collapsing or otherwise sealing holes of the PCF or PCR. In some fiber lasers and amplifiers having large cores problems exist related to energy being generated at multiple-modes (i.e., polygamy), and of mode hopping (i.e., promiscuity) due to limited control of energy levels and fluctuations. The problems of multiple-modes and mode hopping result from the use of large-diameter waveguides, and are addressed by the invention. This is especially true in lasers using large amounts of energy (i.e., lasers in the one-megawatt or more range).

REFERENCES:
patent: 3728117 (1973-04-01), Heidenhain et al.
patent: 4313648 (1982-02-01), Yano et al.
patent: 4367040 (1983-01-01), Goto
patent: 4424435 (1984-01-01), Barnes, Jr.
patent: 4862257 (1989-08-01), Ulich
patent: 4895790 (1990-01-01), Swanson et al.
patent: 5052780 (1991-10-01), Klein
patent: 5319668 (1994-06-01), Luecke
patent: 5379310 (1995-01-01), Papen et al.
patent: 5440416 (1995-08-01), Cohen et al.
patent: 5526155 (1996-06-01), Knox et al.
patent: 5608826 (1997-03-01), Boord et al.
patent: 5642447 (1997-06-01), Pan et al.
patent: 5661835 (1997-08-01), Kato et al.
patent: 5802236 (1998-09-01), DiGiovanni et al.
patent: 5818630 (1998-10-01), Fermann et al.
patent: 5847863 (1998-12-01), Galvanauskas et al.
patent: 5867305 (1999-02-01), Waarts et al.
patent: 5907436 (1999-05-01), Perry et al.
patent: 5974060 (1999-10-01), Byren et al.
patent: 6014249 (2000-01-01), Fermann et al.
patent: 6023361 (2000-02-01), Ford et al.
patent: 6028879 (2000-02-01), Ershov
patent: 6031952 (2000-02-01), Lee
patent: 6053640 (2000-04-01), Miyokawa et al.
patent: 6072931 (2000-06-01), Yoon et al.
patent: 6097863 (2000-08-01), Chowdhury
patent: 6192062 (2001-02-01), Sanchez-Rubio et al.
patent: 6208679 (2001-03-01), Sanchez-Rubio et al.
patent: 6212310 (2001-04-01), Waarts et al.
patent: 6226077 (2001-05-01), Dunne
patent: 6275623 (2001-08-01), Brophy et al.
patent: 6327292 (2001-12-01), Sanchez-Rubio et al.
patent: 6330523 (2001-12-01), Kacyra
patent: 6339662 (2002-01-01), Koteles et al.
patent: 6381008 (2002-04-01), Branagh et al.
patent: 6381388 (2002-04-01), Epworth et al.
patent: 6456756 (2002-09-01), Mead et al.
patent: 6496301 (2002-12-01), Koplow et al.
patent: 6501782 (2002-12-01), Farmer
patent: 6625364 (2003-09-01), Johnson et al.
patent: 6654522 (2003-11-01), Chandalia et al.
patent: 6658183 (2003-12-01), Chandalia et al.
patent: 6665471 (2003-12-01), Farmer et al.
patent: 6717655 (2004-04-01), Cheng et al.
patent: 6754006 (2004-06-01), Barton et al.
patent: 6765724 (2004-07-01), Kramer
patent: 6798960 (2004-09-01), Hamada
patent: 6819871 (2004-11-01), Baldwin et al.
patent: 6822796 (2004-11-01), Takada et al.
patent: 6829421 (2004-12-01), Forbes et al.
patent: 6845204 (2005-01-01), Broeng et al.
patent: 6865344 (2005-03-01), Johnson et al.
patent: 6882431 (2005-04-01), Teich et al.
patent: 6901197 (2005-05-01), Hasegawa et al.
patent: 6914916 (2005-07-01), Pezeshki et al.
patent: 6917631 (2005-07-01), Richardson et al.
patent: 6937795 (2005-08-01), Squires et al.
patent: 6950692 (2005-09-01), Gelikonov et al.
patent: 6952510 (2005-10-01), Karlsen et al.
patent: 6958859 (2005-10-01), Hoose et al.
patent: 6960027 (2005-11-01), Krah et al.
patent: 6963354 (2005-11-01), Scheps
patent: 6996343 (2006-02-01), Neilson
patent: 7043127 (2006-05-01), Hasegawa
patent: 7072553 (2006-07-01), Johnson et al.
patent: 7106932 (2006-09-01), Birks et al.
patent: 7113327 (2006-09-01), Gu et al.
patent: 7116469 (2006-10-01), Bragheri et al.
patent: 7142757 (2006-11-01), Ward
patent: 7190705 (2007-03-01), Fermann et al.
patent: 7199924 (2007-04-01), Brown
patent: 7242835 (2007-07-01), Busse et al.
patent: 7280730 (2007-10-01), Dong et al.
patent: 7340140 (2008-03-01), Xu et al.
patent: 2002/0114574 (2002-08-01), Chandalia et al.
patent: 2002/0122644 (2002-09-01), Birks
patent: 2002/0146226 (2002-10-01), Davis et al.
patent: 2002/0181856 (2002-12-01), Sappey et al.
patent: 2003/0068150 (2003-04-01), Ariel et al.
patent: 2003/0165313 (2003-09-01), Broeng et al.
patent: 2003/0189758 (2003-10-01), Baer et al.
patent: 2004/0033043 (2004-02-01), Monro et al.
patent: 2004/0076197 (2004-04-01), Clarkson
patent: 2004/0091217 (2004-05-01), Nawae et al.
patent: 2004/0095968 (2004-05-01), Avizonis et al.
patent: 2004/0096173 (2004-05-01), Fekety et al.
patent: 2004/0114849 (2004-06-01), Shah et al.
patent: 2004/0114852 (2004-06-01), Brown
patent: 2004/0175084 (2004-09-01), Broeng et al.
patent: 2005/0041702 (2005-02-01), Fermann et al.
patent: 2005/0105865 (2005-05-01), Fermann et al.
patent: 2005/0105866 (2005-05-01), Grudinin et al.
patent: 2005/0147370 (2005-07-01), Yusoff et al.
patent: 2005/0157998 (2005-07-01), Dong et al.
patent: 2005/0163426 (2005-07-01), Fermann et al.
patent: 2005/0169590 (2005-08-01), Alkeskjold
patent: 2005/0173817 (2005-08-01), Fauver et al.
patent: 2005/0226286 (2005-10-01), Liu et al.
patent: 2005/0259933 (2005-11-01), Temelkuran et al.
patent: 2005/0259934 (2005-11-01), Temelkuran et al.
patent: 2006/0024008 (2006-02-01), Galvanauskas
patent: 2006/0067632 (2006-03-01), Broeng et al.
patent: 2006/0120418 (2006-06-01), Harter et al.
patent: 2006/0198246 (2006-09-01), Frederick et al.
patent: 2006/0204190 (2006-09-01), Ranka et al.
patent: 2006/0204195 (2006-09-01), Kurosawa et al.
patent: 2006/0227816 (2006-10-01), Liu
patent: 2006/0233554 (2006-10-01), Ramachandran et al.
patent: 2006/0263024 (2006-11-01), Dong et al.
patent: 2007/0127123 (2007-06-01), Brown et al.
patent: 2009/0028193 (2009-01-01), Islam
patent: 2009/0097515 (2009-04-01), Harter et al.
Di Teodoro, Fabio , et al., “1.1 MW peak-power, 7 W average-power, high-spectral-brightness, diffraction-limited pulses from a photonic crystal fiber amplifier”,Optics Lettersvol. 30, No. 20, (Oct. 15, 2005), 2694-2696.
Di Teodoro, Fabio , et al., “Diffraction-limited, 300-kW peak-power pulses from a coiled multimode fiber amplifier”,Optics Lettersvol. 27, No. 7, (Apr. 1, 2002), 518-520.
Di Teodoro, Fabio , et al., “Harmonic generation of an Yb-doped photonic-crystal fiber amplifier to obtain 1ns pulses of 410, 160, and 190kW peak-power at 531, 354, and 265nm wavelength”,Advanced Solid-State Photonics 29 Technical Digest, Paper ME3, (2006).
Galvanauskas, A. , et al., “Fiber-laser-based femtosecond parametric generator in bulk periodically poled LiNbO3”,Optics Lettersvol. 22, No. 2, (Jan. 15, 1997), 105-107.
Kristiansen, Rene E., et al., “Microstructured fibers and their applications”,Proceedings of the 4th Reunion Espanola of Optoelectronics(OPTOEL),CI-5, (2005), 37-49.
Roser, F. , et al., “131 W 220 fs fiber laser system”,Optics Lettersvol. 30, No. 20, (Oct. 15, 2005), 2754-2756.
Blazephotonics (Company), “Hollow Core Photonic Bandgap Fiber HC-580-01 Product Description”, “http:// www.crystal-fibre.com/datasheets/HC-580-01.pdf”, Feb. 10, 2006.
Blazephotonics (Company), “High NA Multimode Fiber MM-37-01 Product Description”, “http://www.crystal-fibre.com/datasheets/MM-37-01.pdf”, 2005.
Crystal Fibre (Company), “High-Power Fiber Laser and Amplifier Subassembly Modules Product Description”, “http://www.crystal-fibre.com/products/subassemblies.shtm”, 2005 (copyright).
Crystal Fibre (Company), “Multimode Ultra High NA Photonic Crystal Fiber MM-HNA-110 Product Description”, “http://www.crystal-fibre.com/datasheets/MM-HNA-110.pdf”, Apr. 2005.
Crystal Fibre (Company), “Multimode Ultra High NA Photonic Crystal Fiber MM-HNA-200 Product Description”, “http://www.crystal-fibre.com/datasheets/MM-HNA-200.pdf”, Apr. 2005.
Crystal Fibre (Company), “Multimode Ultra High NA Photonic Crystal Fiber MM-HNA-3

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Photonic-crystal-rod optical amplifier with sealed-hole... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Photonic-crystal-rod optical amplifier with sealed-hole..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Photonic-crystal-rod optical amplifier with sealed-hole... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-4245502

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.