Electric lamp and discharge devices – Cathode ray tube – Screen
Reexamination Certificate
1998-05-20
2001-04-17
Patel, Nimeshkumar D. (Department: 2879)
Electric lamp and discharge devices
Cathode ray tube
Screen
C313S463000, C313S465000
Reexamination Certificate
active
06218774
ABSTRACT:
BACKGROUND OF THE INVENTION
The field of the invention is a photoluminescent/electroluminescent display screen which incorporates silica material with fluorescence behavior.
U.S. Pat. No. 4,983,369 a process for producing highly uniform microspheres of silica having an average diameter of 0.1-10 microns from the hydrolysis of a silica precursor, such as tetraalkoxysilanes, which is characterized by employing precursor solutions and feed rates which initially yield a two-phase reaction mixture.
U.S. Pat. No. 4,943,425 teaches a method of making high purity, dense silica of large particles size. Tetraethylorthosilicate is mixed with ethanol and is added to a dilute acid solution having a pH of about 2.25. The resulting solution is digested for about 5 hours, then 2N ammonium hydroxide is added to form a gel at a pH of 8.5. The gel is screened through an 18-20 mesh screen, vacuum baked, calcined in an oxygen atmosphere and finally heated to about 1200° C. in air to form a large particle size, high purity, dense silica.
U.S. Pat. No. 4,965,091 teaches a sol-gel procedure is described for making display devices with luminescent films. The procedure typically involves hydrolysis and polymerization of an organometallic compound together with selected luminescent ions, and coating of a substrate and then heat treatment to form a polycrystalline layer.
U.S. Pat. No. 4,931,312 teaches luminescent thin films which are produced by a sol-gel process in which a gellable liquid is applied to a substrate to form a thin film, gelled and heated to remove volatile constituents and form a polycrystalline luminescent material.
U.S. Pat. No. 4,997,286 teaches an apparatus for measuring temperature in a region of high temperature which includes a sensor made from a fluorescent material, located within the region of high temperature. The fluorescent decay time of the fluorescent material is dependent upon the temperature of the fluorescent material.
U.S. Pat. No. 4,948,214 teaches an array of individual light emitters of a LED linear array each of which is imaged by a discrete step-index light guide and gradient index microlens device. The light guides consist of high refractive index cores, each surrounded by low refractive index matter. A multiplicity of light guides are deposited in channels formed in a host material, such as a silicon wafer. The host material between adjacent channels functions as an opaque separator to prevent cross-talk between adjacent light guides.
U.S. Pat. No. 4,925,275 teaches a liquid crystal color display which provides a transmitted light output that is of one or more colors, black, and/or white, as a function of the color of the incident light input and controlled energization or not of respective optically serially positioned liquid crystal color layers and/or multicolor composite liquid crystal color layer(s) in the display. In one case the display includes a plurality of liquid crystal color layers, each being dyed a different respective color, and apparatus for selectively applying a prescribed input, such as an electric field, to a respective layer or layers or to a portion or portions thereof. Each liquid crystal layer includes plural volumes of operationally nematic liquid crystal material in a containment medium that tends to distort the natural liquid crystal structure in the absence of a prescribed input, such as an electric field, and pleochroic dye is included or mixed with the liquid crystal material in each layer. Each layer is differently colored by the dye so as to have a particular coloring effect on light incident thereon. Exemplary layer colors may be yellow, cyan and magenta.
U.S. Pat. No. 4,957,349 teaches an active matrix screen for the color display of television images or pictures, control system which utilizes the electrically controlled birefringence effect and includes an assembly having a nematic liquid crystal layer with a positive optical anisotropy between an active matrix having transparent control electrodes and a transparent counter electrode equipped with colored filters and two polarizing means, which are complimentary of one another and are located on either side of the assembly.
U.S. Pat. No. 4,948,843 teaches dye-containing polymers in which the dyes are organic in nature are incorporated into glasses produced by a sol-gel technique. The glasses may be inorganic or organic-modified metal oxide heteropolycondensates. The dye-containing polymers are covalently bonded to the glass through a linking group. These products can be used to make optically clear colored films which can be employed in the imaging, optical, solar heat energy and related arts.
U.S. Pat. No. 5,598,058 teaches a thick-film multi-color electroluminescent display which includes a transparent substrate, a transparent electrode deposited on the substrate, a phosphor layer deposited on the transparent electrode having two regions having different compositions providing visually distinct spectra of light when placed in a common electric field, a dielectric layer deposited on the phosphor layer, and a second electrode deposited on the dielectric layer. The phosphor layer may be composed of a marbled ink having a mixture of a first phosphor ink and a second phosphor ink having different compositions providing visually distinct spectra of light when placed in a common electric field. The phosphor layer may be composed of at least two halftone screen prints corresponding to at least two phosphor compositions providing visually distinct spectra of light when placed in a common electric field.
U.S. Pat. No. 5,602,445 teaches a bright, short wavelength blue-violet phosphor for electroluminescent displays which includes an alkaline-based halide as a host material and a rare earth as a dopant. The host alkaline chloride can be chosen from the group II alkaline elements, particularly strontium chloride (SrCl.sub.2) or calcium chloride (CaCl.sub.2), which, with a europium (Eu) or cerium (Ce) rare earth dopant, electroluminesces at a peak wavelength of 404 and 367 nanometers (nm) respectively. The resulting emissions have CIE chromaticity coordinates which lie at the boundary of the visible range for the human eye thereby allowing a greater range of colors for full color flat panel electroluminescent (FPEL) displays.
U.S. Pat. No. 5,719,467 teaches an organic electroluminescent device which has a conducting polymer layer beneath the hole transport layer. A conducting polymer layer of doped polyaniline (PANI) is spin-cast onto an indium-tin oxide (ITO) anode coating on a glass substrate. Then a hole transport layer, for example TPD or another aromatic tertiary amine, is vapor-deposited onto the conducting polymer layer, followed by an electron transport layer and a cathode. Polyester may be blended into the PANI before spin-casting and then removed by a selective solvent after the spincasting, leaving a microporous layer of PANI on the anode. The conducting polymer layer may instead be made of a .pi.-conjugated oxidized polymer or of TPD dispersed in a polymer binder that is doped with an electron-withdrawing compound. An additional layer of copper-phthalocyanine, or of TPD in a polymer binder, may be disposed between the conducting polymer layer and the hole transport layer. The conducting polymer layer may serve as the anode, in which case the ITO is omitted.
U.S. Pat. No. 5,717,289 teaches a thin film electroluminescent element which has a color changing layer doped with green luminescent material and red fluorescent material and separated from an electroluminescent layer for generating blue light for converting the blue light to green light and the green light to red light, and the separation results in reduction of trapping center in the electroluminescent layer.
U.S. Pat. No. 5,711,898 teaches a blue-green emitting ZnS:Cu,Cl phosphor which is made by doping the phosphor with small amounts of gold and increasing the amount of low intensity milling between firing steps. The phosphor has better halflife and brightness characteristics while maintaining its desired emission colo
Hopper Todd Reed
Johansen W. Edward
Patel Nimeshkumar D.
LandOfFree
Photoluminescent/electroluminescent display screen does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Photoluminescent/electroluminescent display screen, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Photoluminescent/electroluminescent display screen will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2472530