Photographic printer

Photocopying – Projection printing and copying cameras – Identifying – composing – or selecting

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C355S071000, C359S819000

Reexamination Certificate

active

06275282

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to photographic printers.
Commercial photographic processing laboratories require the capability of making vast numbers of photographic prints from equally large numbers of photographic negatives. The photographic negatives are typically handled in long roll form and are processed in photographic printers by mounting the long roll of negative film on mechanized film drives. The photographic printers may operate in both automated or semi-automated environments.
Most film drives for use with these photographic printers are either electrically or pneumatically powered. A continuous roll of exposed and developed photographic film is mounted on the feed spool of the film drive and routed across the optical stage of the photographic printer. Individual negative frames are sequentially positioned at the optical stage of the photographic printer by operation of the drive components of the film drive so that one or more photographic prints can be made from each frame under either operator or machine control. Finally, the film is collected on a film take-up spool of the film drive.
Because photographic film is manufactured in a variety of different widths, a film drive needs to be capable of variably laterally positioning the film in relation to the photographic printer so that the longitudinal center line of the various widths of photographic film can be positioned to correspond with the optical center of the photographic printer. And because each frame of a roll of photographic film requires individual cropping, a film drive further must be capable of variably positioning each frame of a roll of film of a given width in a longitudinal sense. The film drive also desirably provides the ability to expose the individual film frames in either a landscape format or a portrait format.
Various film drives are available that satisfactorily perform all of the above-described a functions. See, for example, the printers disclosed in applicant's U.S. Pat. Nos. 5,343,272, 5,146,266 and 5,097,292.
However, there still exists a need to adjust the film as it is being processed in a manner to compensate for exposures that are unwantedly tilted with respect to horizontal or vertical references; there is a need to provide an improved lens deck assembly for the printer; and there is a need to provide an improved riser block for the printer.
SUMMARY OF THE INVENTION
This invention is directed to the provision of an improved photographic printer.
More specifically, this invention is directed to the provision of a film drive assembly that provides selective positioning of each frame of film relative to the optical stage of the associated printer including positioning in a manner to compensate for unwanted tilting of the exposure.
This invention is further directed to the provision of an improved lens deck assembly for the printer.
This invention is yet further directed to the provision of an improved riser block for the printer.
The invention film drive assembly is intended for use with photographic equipment of the type including an optical stage defining an optical center line and includes a base defining a central aperture adapted to be positioned proximate the optical stage, a table assembly mounted on the base for rotary movement about the optical center line and including an aperture, and a film transport mechanism movable with the table assembly and defining a longitudinal film path passing over the table aperture whereby the film transport mechanism may be rotated with the table assembly about the optical center line between portrait and landscape formats.
According to the invention, the film drive assembly further includes rotation means mounting the film transport mechanism for rotary movement relative to the table assembly about the optical center line. With this arrangement, the film transport mechanism may be rotated relative to the table assembly aperture to rotate the film relative to the table assembly aperture and compensate for unwanted tilting of the exposure.
According to a further feature of the invention, the rotation means comprises a ring mount member having a central ring portion positioned concentric to the optical center line and parallel rails at opposite sides of the central ring portion, and the film transport mechanism is mounted on the rails for movement in a direction transverse to the longitudinal film path. With this arrangement, adjustment of the film relative to the aperture in an X direction may be achieved by selectively moving the film along the longitudinal film path, adjustment in the Y direction may be achieved by moving the film transport mechanism transversely on the rails, and rotary adjustment of the film relative to the aperture may be achieved by rotary movement of the film transport mechanism about the optical center line.
According to a further feature of the invention, first rotation means mount the ring mount member and the table assembly for joint rotary movement about the optical center line to allow joint movement of the film transport mechanism and the table assembly between portrait and landscape formats, and second rotation means mount the ring mount member for rotary movement relative to the table assembly about the optical center line to allow rotation of the film relative to the table assembly aperture.
According to a further feature of the invention, the first rotation means comprises first bearing means mounting the table assembly for rotary movement on the base and means drivingly interconnecting the table assembly and the ring mount member, the second rotation means comprises second bearing means mounting the ring mount member for rotary movement relative to the table assembly, and the means drivingly interconnecting the table assembly and the ring mount member is operative when actuated to rotate the ring mount member relative to the table assembly. This arrangement facilitates the joint rotary movement of the table assembly and ring mount member between portrait and landscape formats and further facilitates the selective rotary movement of the film relative to the table assembly aperture to correct for out of level exposures.
According to a further feature of the invention, the printer includes means for adjusting the size and configuration of the aperture and the adjusting means comprises a plurality of plates mounted for relative movement to adjustably define the aperture and having co-planar upper faces. This arrangement provides a co-planar upper face for the aperture to minimize light leakage and improve focus.
According to a further feature of the invention, the printer includes a lens deck and the lens deck includes a plurality of lens carriages mounted at respective levels on the optical axis for linear movement in parallel directions generally normal to the optical axis and each including a plurality of laterally spaced lens assemblies. With this arrangement, the carriages may be selectively moved within the lens deck housing to bring a lens or lens set into alignment with the optical axis corresponding to the film size in use and the desired print sizes.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is schematic view of a photographic printer employing a film drive assembly according to the invention;
FIG. 2
is a plan view of the film drive assembly;
FIG. 3
is a front view of the film drive assembly;
FIG. 4
is an end view of the film drive assembly;
FIG. 5
is an exploded view of the film drive assembly;
FIG. 6
is a somewhat schematic cross-sectional view of the film drive assembly;
FIG. 7
is a schematic view showing film movements achieved utilizing the invention film drive assembly;
FIG. 8
is a perspective view of a riser block employed in the printer;
FIG. 9
is a cross-sectional view taken on line
9

9
of
FIG. 8
;
FIG. 10
is a schematic plan view of the riser block;
FIG. 11
is a plan view of a blade employed in the riser block;
FIG. 12
is an edge view of the blade of
FIG. 11
;
FIG. 13
is a fragmentary exploded view of coacting blades employed in the riser block

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Photographic printer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Photographic printer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Photographic printer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2473961

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.