Photographic elements for colorimetrically accurate...

Radiation imagery chemistry: process – composition – or product th – Radiation sensitive product – Two or more radiation-sensitive layers containing other than...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S506000

Reexamination Certificate

active

06296994

ABSTRACT:

FIELD OF THE INVENTION
The field of the invention is color photographic films intended to be scanned in order to retrieve the recorded image for viewing. The element is particularly suitable for accurately capturing scene light exposures with high colorimetric precision, where image transformation to a viewable form is achieved by film scanning, electronic signal processing, and image file transfer to an output device.
DEFINITION OF TERMS
In referring to grains and emulsions containing two or more halides, the halides are named in order of ascending concentrations.
The terms “high chloride” and “high bromide” in referring to grains and emulsions indicate that chloride or bromide, respectively, is present in a concentration of greater than 50 mole percent, based on silver.
The term “equivalent circular diameter” or “ECD” is employed to indicate the diameter of a circle having the same projected area as a silver halide grain.
The term “aspect ratio” designates the ratio of grain ECD to grain thickness (t).
The term “tabular grain” indicates a grain having two parallel crystal faces which are clearly larger than any remaining crystal faces and an aspect ratio of at least 2.
The term “tabular grain emulsion” refers to an emulsion in which tabular grains account for greater than 50 percent of total grain projected area.
The terms “blue spectral sensitizing dye”, “green spectral sensitizing dye”, and “red spectral sensitizing dye” refer to a dye or combination of dyes that sensitize silver halide grains and, when adsorbed, have their peak absorption in the blue, green and red regions of the spectrum, respectively.
The term “half-peak bandwidth” in referring to a dye indicates the spectral region over which absorption exhibited by the dye is at least half its absorption at its wavelength of maximum absorption.
In referring to blue, green and red recording dye image forming layer units, the term “layer unit” indicates the layer or layers that contain radiation-sensitive silver halide grains to capture exposing radiation and that contain couplers that react upon development of the grains. The grains and couplers are usually in the same layer, but can be in adjacent layers.
The term “overall half-peak bandwidth” indicates the spectral region over which a combination of spectral sensitizing dyes within a layer unit exhibits absorption that is at least half their combined maximum absorption at any single wavelength.
The term “dye image-forming coupler” indicates a coupler that reacts with oxidized color developing agent to produce a dye image.
The term “colored masking coupler” indicates a coupler that is initially colored and that loses its initial color during development upon reaction with oxidized color developing agent.
The term “substantially free of colored masking coupler” indicates a total coating coverage of less than 0.02 millimole/m
2
of colored masking coupler.
The term “development inhibitor releasing compound” or “DIR” indicates a compound that cleaves to release a development inhibitor during color development. As defined DIR's include couplers and other compounds that utilize anchimeric and timed releasing mechanisms.
The term “Status M” density indicates density measurements obtained from a densitometer meeting photocell and filter specifications described in
SPSE Handbook of Photographic Science and Engineering
, W. Thomas, editor, John Wiley & Sons, New York, 1973, Section 15.4.2.6 Color Filters. The International Standard for Status M density is set out in “Photography—Density Measurements—Part 3: Spectral conditions”, Ref. No. ISO 5/3-1984 (E).
The term “exposure latitude” indicates the exposure range of a characteristic curve segment over which instantaneous gamma (&Dgr;D/&Dgr;log E) is at least 25 percent of gamma, as defined above. The exposure latitude of a color element having multiple color recording units is the exposure range over which the characteristic curves of the red, green, and blue color recording units simultaneously fulfill the aforesaid definition.
The term “gamma ratio” when applied to a color recording layer unit refers to the ratio determined by dividing the color gamma of a cited layer unit after an imagewise color separation exposure and process that enables development of primarily that layer unit by the color gamma of the same layer unit after an imagewise white light exposure and process that enables development of all layer units. This term relates to the degree of color saturation available from that layer unit after conventional optical printing. Larger values of the gamma ratio indicate enhanced degrees of color saturation under optical printing conditions.
Research Disclosure
is published by Kenneth Mason Publications, Ltd., Dudley House, 12 North St., Emsworth, Hampshire P010 7DQ, England.
BACKGROUND OF THE INVENTION
Photographic recording materials have historically been designed to operate in an analog world involving direct optical print-through to a reflection print material or direct viewing of transmitted light, depending on the mode of image development. Color negative films record scene light exposures and, following development and chemical image processing through interlayer interimage effects generally produced by colored masking couplers and development inhibitor releasing couplers, yield orange masked-films suitable for the attenuation of light to allow the exposure of silver halide color paper giving a viewable representation of the scene after its processing and drying. Color reversal films record scene light exposures and, following development and chemical image processing through interlayer interimage effects generally produced by first development iodide gradients and second development inhibitor releasing couplers, yield positive images suitable for projection and viewing in a dark surround. The accuracy of recording the different colors of visible light in the scene exposures is limited by either the constituents the films were required to contain to perform their function (e.g. colored masking couplers in color negative films) or the degree of chemical image processing achievable for color correction or ‘management’ by chemical development modification.
With the introduction of color film scanning, however, the role of films in producing images is fundamentally changed. The color film image dye densities of films designed exclusively for scanning are no longer required to attenuate the precise exposure of silver halide color paper or the human eye with fully color corrected dye hues. A suitable exposure of scanner charged coupled device arrays to create image-bearing electronic signals can be accomplished with image dye amounts that have not been modified by development interlayer interimage effects. The color correction that was formally performed chemically can be done with higher effectiveness by mathematical transformations of the electronic signals which are required anyway to convert the image-bearing signals back into a viewable form, such as to code values used by a computer color monitor display or by a writing device such as an inkjet printer. In relying on electronic image processing, the color films can be re-designed to record scene exposures with greater accuracy. More accurate color recording of the scene light is in fact vital to obtain the full benefit of such hybrid systems. The unique non-linear signal amplifications available to electronic image processing can produce a multitude of different high quality renditions of the scene, depending on individual preferences, but these renditions will be unfaithful in their color rendition and disappointing, if the color film failed to record the scene exposures correctly at the time of photography. Such color accuracy requirements are found in metameric color failure, where the certain objects with very different spectral reflectance properties stimulate the human visual system sensitivities the same. Since optical color film spectral sensitivities differ from that of the eye, theses films record the scene exposures differently leading to colo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Photographic elements for colorimetrically accurate... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Photographic elements for colorimetrically accurate..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Photographic elements for colorimetrically accurate... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2563357

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.