Liquid purification or separation – Processes – Utilizing electrical or wave energy directly applied to...
Reexamination Certificate
2001-06-08
2002-10-22
Hoey, Betsey Morrison (Department: 1724)
Liquid purification or separation
Processes
Utilizing electrical or wave energy directly applied to...
C210S747300, C210S760000, C210S908000
Reexamination Certificate
active
06468434
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates in general to a photodegradative process for the purification of water contaminated by ether-based compounds.
More specifically, the present invention relates to a photodegradative process for the purification of water contaminated by methylterbutyl ether (MTBE) or its analogous products such as ethylterbutyl ether (ETBE).
BACKGROUND OF THE INVENTION
Soft groundwater is becoming an insufficient resource throughout the world. One of the main reasons for its scarcity is the inflow of chemical products and biological agents into groundwater with a harmful effect on the quality of the water.
The main factors which are a cause of preoccupation are chemical compounds such as salts of heavy metals and organic substances.
These materials, generally defined as “contaminants” or “pollutants”, may remain in the groundwater even after passage through natural filters as calcareous zones.
Ether-based compounds such as methylterbutyl ether (MTBE) and ethylterbutyl ether (ETBE), are commonly used as high-octane additives in fuels for motor vehicles to improve their combustion and significantly reduce the quantity of carbon monoxide and other pollutants present in the motor exhausts.
These ethers are generally substances which are not easily degradable and remain in deep water and sediments in which they have been accidentally dispersed.
The toxicity of these compounds is still very questionable. For example, according to a recent Italian report (Trenton Times, Nov. 13, 1994), MTBE is classified as a potential carcinogen for human beings, whereas other studies demonstrate the limited toxicity of this product.
Regardless of its toxicity, however, MTBE gives water a very strong, unpleasant smell which can be perceived at concentrations starting from about 20 ppb.
Furthermore, MTBE is relatively soluble in water (43,000 ppm) and therefore has a high mobility in soil allowing it to rapidly migrate in underground water.
DESCRIPTION OF THE PRIOR ART
The treatment normally used for removing contaminants from water involves techniques such as adsorption on activated carbon, stripping with air, disinfecting/sterilization by means of chlorination or ozonization.
Adsorption on activated carbon, however, has the disadvantage of generating, in turn, an additional waste product consisting of the carbon itself impregnated with a badly-smelling material which must therefore be appropriately incinerated, as well as typical drawbacks associated with the treatment of liquid streams on activated carbon beds.
Stripping with air is difficult to apply as the gaseous stream, if discharged into the atmosphere, causes obvious problems, making it necessary to collect the gaseous stream and treat it further to block the polluting agent.
In addition, a recent study on 15 polluted sites demonstrated that the efficiency of removal by stripping was about 56% (American Petroleum Institute, Pub. Nr. 4531, 1991).
Treatment with chemical oxidizing agents, such as for example hypochlorite, on the one hand eliminates the characteristic smell of the water, but does not remove the presence of polluting compounds due to the partial oxidation of the contaminating agent.
A technique which is being used more and more frequently for purifying water contaminated by organic compounds consists in the photodegradation of the contaminants by the action of solar or UV radiation, operating in the presence of metal oxide catalysts of the semiconductor type.
This technique, which is generally carried out in the presence of oxygen and at room temperature, causes the “mineralization” of the contaminants, this term referring to the complete degradation of the pollutant, with the formation of simple substances such as water, carbon dioxide and, possibly, mineral acids.
Semiconductor metal oxides, such as titanium dioxide, are materials which have a particular electronic configuration; the valence band, at a lower energy level, is completely occupied by electrons, whereas the conduction band, at a higher energy level, is almost completely empty. When a semiconductor of this kind is irradiated with energy photons higher than the “bandgap” (i.e. the interval between the two bands), or with light having a wave-length lower than the “bandgap”, the electrons pass from the valence band to the conduction band, leaving an electronic deficiency in the valence band and consequently causing the formation of electron-hole couples.
The electrons are transferred to the semiconductor/liquid interface and the interactions between electrons and/or photogenerated holes, the species adsorbed on the surface of the semiconductor and the oxygen present in the system cause the degradation of the contaminants.
From a technical-environmental point of view, photocatalysis has the following advantages, with respect to the more traditional technologies:
complete mineralization of a wide range of organic contaminants;
high separation efficiency to residual concentrations of the organic contaminant in the order of ppb;
absence of regenerative processes of the thermal type, required for example when activated carbon is used, which often cause problems of an environmental nature linked to gas emissions, and
absence of microbial fouling phenomena typical of carbon filters.
In practice, however, there are various difficulties which prevent a wide application of photodegradation for the purification of water.
For example, water coming from the underground or from surface streams, contains varying quantities of alkaline and earth-alkaline metal salts which can interact with the catalyst suspended in the purification system, with consequent deactivation of the catalyst itself.
In particular, this phenomenon is attributed to the interaction which is established between the catalytically active sites of the semiconductor metal oxide and anions having coordinating characteristics, present in the water subjected to treatment.
It has been particularly observed that the HCO
3
−
bicarbonate ion, commonly present in water associated with the Ca
++
ion, significantly inhibits the catalytic activity of said semiconductor oxides.
SUMMARY OF THE INVENTION
It has now been found, according to the present invention, that the bicarbonate ion can be simply and economically eliminated to obtain water without contaminants by means of pretreatment of the water with an inorganic acid up to a pH ranging from 4.0 to 4.5.
In addition, it has been observed that this acidification pretreatment accelerates the photodegradation kinetics of the pollutant also using the UV oxidative/ozone system alone, making the use of semiconductor metal oxide catalysts no longer indispensable and considerably simplifying the setting up of a water treatment plant.
In accordance with this, the present invention relates to a photodegradative process for the purification of water contaminated by ether-based compounds, characterized by the following steps:
(a) pretreatment of the contaminated water with an inorganic acid up to a pH ranging from 4.0 to 4.5 with the elimination of the carbon dioxide thus formed;
(b) dispersion in the water of solid particles of a semiconductor metal oxide or dissolution of a stream consisting of ozone in pure oxygen or air;
(c) irradiation of the dispersion or solution obtained in step (b) with ultraviolet light to degrade the ether-based contaminants.
The water which can be treated according to the process of the present invention comes from the underground or from surface streams which contains organic pollutants such as methylterbutyl ether or its analogous products (ETBE) or other compounds such as, for example, cycloaliphatic compounds, for example tetrahydrofuran, used as solvents, ter amyl ether (TAME, tertiary-amyl ether) and diiospropyl ether (DIPE) which are used as additives for fuels.
The overall quantity of these contaminants can reach concentrations in the order of tens of parts per million by weight (ppm). Furthermore, the water contains the bicarbonate ion whose concentration may vary, depending on the origin, from ab
Cova Umberto
Massetti Felicia
Pappa Rosario
EniTecnologie S.p.A.
Hoey Betsey Morrison
Oblon, Spivak, McClelland, Maier & Nuestadt, P.C.
LandOfFree
Photodegradative process for the purification of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Photodegradative process for the purification of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Photodegradative process for the purification of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2992592