Photo-sensitive illuminated skate wheel

Electric lamp and discharge devices: systems – Discharge device and/or rectifier in the supply circuit – Flashers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C315S149000, C315S156000, C362S500000

Reexamination Certificate

active

06175196

ABSTRACT:

BACKGROUND
This invention relates to automatic lighting systems and more specifically to lighting systems which automatically activate when in the dark.
BACKGROUND—DESCRIPTION OF PRIOR ART
The use of lights on rotating assemblies, such as, bicycle and skate wheels (roller skate and in-line skate wheels) is well known. Flying disks and yo-yos are other rotating assemblies which have included lights. Lights placed on bicycles and skate wheels provide safety for the rider by alerting motorists of there presence in the dark. Reflectors provide some safety, but they only provide illumination when directly in the headlights of a motor vehicle, at which time it may be to late. To provide greater safety, lights are mounted on the wheels of bicycles and roller blade skates to actively generate light which has a rotating pattern to it. This rotating pattern easily catches ones eye and is easily identified as a rolling wheel even when no other part of the bicyclist or roller blade skater can be seen.
Most systems for illuminating these wheels involve a battery, a manual switch and a light connected in series. The only problem with this design is that it must be turned on by the user and also turned off. Since the most likely user of such a wheel safety light is children it is unlikely that such a system will be used properly. Either the light is not turned on at dusk or when they are turned-on, the light is not turned-off, thus draining the battery.
To get around these problem a number of inventions have been designed which use the rotating motion of the wheel or toy to generate electricity to power the lights. In this way there are no switches to turn on and off and no batteries to change. Examples of such generator powered wheels are shown in U.S. Pat. No. 5,718,499 to Caro for a “Roller Blade Wheel Lighting System”, U.S. Pat. No. 5,580,093 to Conway for a “Light Generating and Emitting Roller Skate Wheel”, and U.S. Pat. No. 5,552,972 to Rezvani for a “Self-Powered Lighted Wheel. However, these systems are complicated, heavy, expensive to build; and are prone to failure under the harsh environment kids place them in. They also create a constant drag on a rider or skater which is undesirable. These systems also require specially designed skate shoes and attachments to bicycles which adds to cost. The invention disclosed here does not suffer from these problems and can be used with standard roller skates and bicycles and be completely sealed inside a plastic or urethane housing with no moving parts and no external switches.
Another way inventors have tried to eliminate the use of external switches is to include an acceleration sensor (i.e. motion sensor, acceleration switch, accelerometer, etc.). By including such a circuit, battery power is conserved because the lights are only on when in use. The use of acceleration sensors are shown in U.S. Pat. No. 5,683,164 to Chien for an “Illuminated Wheel”, U.S. Pat. No. 5,536,074 to Hsu for a “Light-Generating Wheel for an In-line Skate”, U.S. Pat. No. 5,475,572 to Tseng for a “Light Emitting Roller for Roller Skates”, U.S. Pat. No. 5,294,188 to Vancil for an “Illuminated Roller Skate Wheel”, U.S. Pat. No. 5,278,733 to Thomas for a “Light Apparatus For Roller Skate”, U.S. Pat. No. 5,278,732 to Thomas for a “Bicycle Wheel Portable Light and Reflector”, U.S. Pat. No. 4,867,727 to Lanius for a“Toy Including Centrifugal Switch”, and U.S. Pat. No. 4,363,502 to Rakerman for an “Illuminative Skate Wheel”. More advanced designs include circuit delays such as that shown in U.S. Pat. No. 5,653,523 to Roberts for a “Miniature Centrifugal Lighting Assembly”. In this last design lights are made to stay on for a short time even when motion is not detected. This is to allow the lights to continue operating even if the user pauses for a moment to rest, but shuts off after a predetermined time period. These designs are all workable systems, but still waste a great deal of battery power to lights during the daytime. The proposed invention does not suffer from this limitation. An Acceleration switch limits power usage to only times of use, and a photo sensor only allows power drain during times of darkness. This combination saves battery power during daylight hours by keeping the lights off, resulting in battery use that is over four times less that Roberts centrifugal light design. Because the battery is easily the most costly part of the entire circuit, the use of a smaller battery can save money and space in the design. In fact, the proposed safety light saves so much power that the circuit can be completely sealed inside a housing and the batteries never need to be changed for the life of the device. An in-line roller skate wheel lasts 50 to 200 hours depending on the surface it is used on. If we assume that less than 25 percent of the time it will be used in the dark an operational battery life of approximately 30 to 50 hours should be sufficient to last the life of the wheel. The circuits disclosed here also continue producing light long after this 50 hours though at a much lower level. Without the photo sensor circuit such roller blade wheels would run out of power long before the wheel was thrown away, or would require much larger batteries or operate at much lower power, and thus, less visibility. This is a safety hazard for children since they will in general use the wheel until it is completely wore out. The circuit can also be mounted on a bicycle for safety, having 500 to 1,000 hours of battery life on a bike expected to last 5,000 hours. The addition of a photo sensor adds very little to the cost of the circuit, and more than pays for itself by reducing the size of the battery and allowing operation of the bike during the day without draining the battery. The circuit also has some obscure safety applications such as for frisbees or flying disks for throwing at night. For this application very few hours of operational life would be needed since the disk would be illuminated only while in flight at night.
OBJECTIVES AND ADVANTAGES
Accordingly, several objects and advantages of our invention are:
a) To provide an automatic battery-powered lighting systems for rotating assemblies where the battery lasts the life of the device.
b) To provide a safety light that activates only when both the rotation of the assembly is detected and when a low ambient light level is detected, thus conserving power for times when it is actually needed.
c) To provide a delayed turn-off of safety light illumination when acceleration is no longer detected, thus providing safety illumination even when the user momentarily stops.
d) To provide a delayed turn-on of safety light when ambient light is intermittently blocked, such as, periodic rotation of the safety light behind wheel supports. The delay prevents the illumination device from turning fully on during these times, thus saving battery power during the day for wheels that are partially shrouded.
e) To provide a means for using a much smaller battery than would normally be possible, where substantial reductions in power consumption is achieved by limiting activation of the safety light to only times when the assembly is rotating and also in a dark environment.
f) To eliminate external switches and eliminate batteries changes, whereby the Safety Light can be completely sealed within its housing to provide a water-tight and air-tight enclosure.
g) To use Light Emitting Diodes (LEDs) to provide efficient light production to further extending battery life.
h) To provide the combination of high efficiency LEDs and Lithium battery which makes a very compact lighting system with an exceptionally long operational life.
i) To provide a safety light for wheeled vehicles that is highly reliable, and automatically activating when needed.
j) To provide a safety light for toy flying discs and yo-yos that uses substantial power only when being used in the dark.
k) To provide a safety light compact enough to fit within an in-line roller skate wheel and illuminating the wheel only when used in the dark.
l) To provide a safety light which a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Photo-sensitive illuminated skate wheel does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Photo-sensitive illuminated skate wheel, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Photo-sensitive illuminated skate wheel will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2473424

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.