Phosphonomethylated polyvinylamines and preparation and use...

Liquid purification or separation – Processes – Ion exchange or selective sorption

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S699000, C210S700000, C525S340000, C525S383000, C526S277000, C526S278000, C526S310000, C526S312000

Reexamination Certificate

active

06264839

ABSTRACT:

DESCRIPTION
The present invention relates to phosphonomethylated polyvinylamines, the preparation thereof and the use thereof as water treatment agents and as detergent additives.
U.S. Pat. No. 4,217,214 disclosed a polyvinylamine hydrochloride having a molecular weight of more than 3×10
5
. It is prepared by reaction of acetaldehyde and acetamide to give ethylenebisacetamide, which is thermally cleaved into N-vinylacetamide and acetamide, polymerization of the N-vinylacetamide and hydrolysis of the poly-N-vinylacetamide. Polyvinylamine hydrochloride is used as a flocculant for particles suspended in water and for treating effluents and sludges.
U.S. Pat. No. 4,421,602 discloses partially hydrolyzed polymers of N-vinylformamide. The linear basic polymers described therein contain as characteristic components from 90 to 10 mol % of vinylamine units and from 10 to 90 mol % of N-vinylformamide units. They are prepared by polymerizing N-vinylformamide and hydrolyzing the polymers in the presence of acids or bases.
EP-A-0 216 387 disclosed a process for preparing water-soluble copolymers which contain copolymerized vinylamine units by copolymerizing
(a) from 95 to 10 mol % of N-vinylformamide with
(b) from 5 to 90 mol % of an ethylenically unsaturated monomer selected from the group consisting of vinyl acetate, vinyl propionate, C
1
-C
4
-alkyl vinyl ethers, N-vinylpyrrolidone and esters, nitriles and amides of acrylic acid and methacrylic acid
and then hydrolyzing the copolymer, wherein from 30 to 100 mol % of the formyl groups are eliminated from the copolymer.
EP-A-0 262 577 and EP-A-0 264 649 likewise disclose polymers which contain vinylamine units. They are prepared by polymerizing N-vinylformamide and substituted N-vinylamides and hydrolyzing the polymers to form vinylamine units.
J. Org. Chem. 31 (1966), 1603-1607, discloses the phosphonomethylation of amines. It is carried out in similar fashion to a Mannich reaction by reacting amines which contain at least one N—H group with phosphorous acid and formaldehyde at an acid pH.
This converts the >N—H group of the amine into the group
Such products are used for example as complexing agents for polyvalent metal ions.
It is an object of the present invention to provide new phosphonomethylated compounds.
We have found that this object is achieved by the present invention by providing phosphonomethylated polyvinylamines which contain as characteristic structural elements units of the formula
where
R
1
is hydrogen, C
1
-C
8
-alkyl or
and
X is hydrogen, an alkali metal, ammonium or one equivalent of an alkaline earth metal.
Such phosphonomethylated polyvinylamines are obtainable by subjecting polymers which contain units of the formula
where R and R
2
are each hydrogen or C
1
-C
6
-alkyl, to a phosphonomethylation, ie. a reaction with formaldehyde and phosphorous acid, and simultaneous hydrolysis (mineral acid) in one step, or first to a hydrolytic elimination therefrom of the group —CO—R and then the polymeric remainder, composed of units of the formula
where R
2
is hydrogen or C
1
-C
6
-alkyl, to a phosphonomethylation.
The polymers which are subjected to the phosphonomethylation contain as essential monomers of group (a) compounds of the general formula
where R
2
and R are each hydrogen or C
1
-C
6
-alkyl. The preferred monomer of the formula IV is N-vinylformamide, ie. R=R
2
=H. Other suitable N-vinylamides of the formula IV are for example N-vinyl-N-methylformamide, N-vinylacetamide and N-vinyl-N-methylacetamide. In addition to the homopolymers of the vinylamides of the formula IV it is also possible to use copolymers of the monomers of group (a), for example copolymers of N-vinylformamide and N-vinylacetamide.
In addition to the homopolymers and copolymers of monomers (a) it is possible to use copolymers which contain as copolymerized units at least one monomer of group (b) which is copolymerizable with the monomers of group (a). Suitable comonomers of group (b) are for example monoethylenically unsaturated C
3
-C
6
-carboxylic acids and the esters, amides and nitriles thereof. Specific compounds of this kind are for example acrylic acid, methacrylic acid, crotonic acid, amleic acid or anhydride, fumaric acid, itaconic acid or anhydride, methyl acrylate, ethyl acrylate, methyl methacrylate, butyl methacrylate, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, monoethyl maleate, diethyl maleate, hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, methacrylamidopryopyldimethylammonium chloride, dimethylaminopropylacrylamide, acrylonitrile and methacrylonitrile. It is also possible to use sulfo-containing monomers such as vinylsulfonic acid, allylsulfonic acid, methallylsulfonic acid, styrenesulfonic acid, 3-sulfopropyl acrylate, 3-sulfopropyl methacrylate and acrylaminomethylpropanesulfonic acid. It is also possible to use N-vinylmethylimidzaole, N-vinylcaprolactam, N-vinylimidazole, N-vinylmethylimidazole, N-vinylcaprolactam, N-vinylimidazole, N-vinylmethylimidazole, N-vinyl-2-methylimidazole, vinyl acetate, vinyl propionate, vinyl butyrate, styrene, olefins of from 2 to 10 carbon atoms, such as ethylene, propylene, isobutylene, hexene or diisobutene, vinyl alkyl ethers, such as methyl vinyl ether, ethyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, hexyl vinyl ether and octyl vinyl ether, and also mixtures thereof. Various ethylenically unsaturated monomers which contain carboxyl or sulfo groups may be polymerized in particular from aqueous solution, in a partially or completely neutralized form. Neutralization is preferably effected using alkali metal bases, such as sodium hydroxide solution and potassium hydroxide solution, ammonia or amines, eg. trimethylamine, ethanolamine or etrithanolamine. The basic monomers are preferably used in the form of their salts with mineral acids, eg. hydrochloric acid, sulfuric acid, or in quaternized form (suitable quaternizing agents being for example dimethyl sulfate, diethyl sulfate, methyl chloride, ethyl chloride and benzyl chloride).
The copolymers preferably contain (a) from 95 to 5 mol % of N-vinylformamide and (b) from 5 to 95 mol % of an unsaturated monomer selected from the group consisting of vinyl acetate, C
1
-C
4
-alkyl vinyl ethers, N-vinylpyrrolidone, N-vinylcaprolactam, monoethylenically unsaturated C
3
-C
6
-carboxylic acids, the esters and nitriles thereof, and also, if available, anhydrides of acrylic acid, methacrylic acid, maleic acid and itaconic acid, and mixtures thereof. The copolymers contain at least 1, preferably 5, mol % of N-vinylformamide or another monomer of group (a) as copolymerized units. The copolymers contain the monomers of group (b) in amounts of up to 99, preferably from 5 to 95, mol %.
The polymerization may also include a further group of monomers (c) which contain at least 2 ethylenically unsaturated double bonds in the molecule. The compounds in question here are crosslinkers, for example methylenebisacrylamide, N,N′-divinylethyleneurea, N,N′-divinylpropyleneurea, ethylidenebis-3-vinylpyrrolidone, acrylic, methacrylic and maleic esters of dihydric or polyhydric alcohols, eg. ethylene glycol diacrylate, butylene glycol diacrylate, ethylene glycol dimethacrylate and trimethylolpropane triacrylate. Further suitable esters of this kind are obtained for example on esterifying polyhydric alcohols, eg. glycol, glycerol, pentaerythritol, glucose, fructose, sucrose, polyalkylene glycols of molecular weight 400-6,000 and polyglycerols of molecular weight 126-368, with acrylic acid, methacrylic acid or maleic acid using at least 2 mol of one of the unsaturated carboxylic acids mentioned per mole of the alcohol used. There are other possibilities, in particular, if the polymerization is to be carried out in an organic solvent: divinylbenzene, divinyldioxane, divinyl adipate, divinyl phthalate, pentaerythritol triallyl ether, pentallylsucrose, diallyl ethers and divinyl ethers of polyalkylene glycols of molecular weight 400-6,000, ethylene gl

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Phosphonomethylated polyvinylamines and preparation and use... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Phosphonomethylated polyvinylamines and preparation and use..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Phosphonomethylated polyvinylamines and preparation and use... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2562807

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.