Phosphate flame retardant polymers

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06815476

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to flame retarded polymer composition for molding applications which polymer composition comprises in admixture a thermoplastic molding resin and a particular phosphate flame retardant. The phosphate fame retardant comprises a combination or mixture of two phosphates, namely a low molecular weight and a high molecular weight phosphate and to articles molded with the composition of this invention.
The prior art has disclosed the use of phosphates as flame retardants for polymers or thermoplastic molding resins particularly such monophosphates as triphenyl phosphate, tricresyl phosphate, diphenylcresyl phosphate and the like. Such monophosphate esters tend to migrate to the surface when the thermoplastic composition is molded such as injection molding causing so called “juicing.” Juicing is where the additive migrates to the surface of the molded article during molding. Also in order to obtain good flame retardancy, often other flame retardants need to be employed with the momophosphate esters, particularly halogen containing flame retardants, Halogen flame retardants are undesirable because of the environment concerns and the pitting of the mold surface. On the other hand, if high concentrations of the particular phosphate esters are employed a decrease in heat resistance and impact resistance can result.
Gosen et al U.S. Pat. No. 5,204,394 discloses a composition of an aromatic polycarbonate, a styrene containing copolymer such as acrylonitrile-butadiene-styrene (ABS) and oligomeric phosphate flame retardants. The patent further discloses that the oligomeric phosphate employed therein may be a blend of several different oligomers (column 4 lines 46-66).
However, no prior art example has been uncovered that discloses the use of high molecular weight phosphates as flame retardant, i.e. the high molecular weights of the magnitude employed herein, or the combination of a low molecular weight phosphate and a high molecular weight phosphate as employed in the instant invention.
Therefore, the object of the present invention is to provide a thermoplastic molding composition having good flame retardant properties without the use of halogenated flame retardant.
A further object of the present invention is to provide a flame retardant composition having good heat deflection temperature and impact resistance.
Another object of the present invention is to provide a flame retardant molded thermoplastic article prepared from the composition of this invention and having good mechanical properties of heat deflection and impact resistance.
These and other objects of this invention will become apparent from the following description of this invention.
SUMMARY OF THE INVENTION
This invention is directed to a thermoplastic resin molding composition having excellent flame retardant properties using a non halogenated flame retardant while maintaining good mechanical properties of heat deflection temperature, impact resistance and flow. Specifically the flame retardant employed herein is a combination of a low molecular weight phosphate and a high molecular weight phosphate. The low molecular weight phosphate has a molecular weight of at least about 500 and preferably about 500 to about 2000. The high molecular weight phosphate has a molecular weight of at least about 2300 and preferable about 2300 to about 11,000.
DETAILED DESCRIPTION OF THE INVENTION
As stated previously, the invention is directed to a flame retardant thermoplastic molding composition and to articles molded therefrom. The flame retardant thermoplastic molding composition comprises in admixture a thermoplastic molding resin and a flame retardant additive comprising in combination a low molecular weight and a high molecular weight phosphate. The phosphates employed herein are preferably represented by the following formula:
wherein R
1
, R
2
, R
3
and R
4
are independently selected from the group consisting of an aryl or an alkarly group, X is an arylene group,m is an integer of from 0 or 1. In the case of the low molecular weight phosphate, the phosphate is an oligomeric phosphate wherein n is an integer of from 1 to 5. The low molecular weight phosphate of this invention with or without this above formula has a molecular weight of at least about 500 and preferable about 500 to about 2000 wherein n is 1 to 5. The high molecular weight phosphate of this invention with or without this above formula has a molecular weight of at least about 2300 and preferably about 2300 to about 11,000 wherein n is an integer of from about 6 to 35. More preferably, the high molecular weight phosphate of this invention has a molecular weight of at least about 5000 and most preferably at least about 7500. It is important that the molecular weight of the low molecular weight phosphate does not overlap the molecular weight of the high molecular weight phosphate.
In the above formula, the aryl groups may be aryl or an alkyl substituted aryl group thus alkaryl groups. Preferable the aryl groups are independently selected from cresyl, phenyl, xylenyl, propylphenyl and butylphenyl groups. The arylene group is derived from a dihydric compound and is preferable resorcinol, hydroqinone and bisphenol-A. More particularly the aryl group (R
1
, R
2
, R
3
and R
4
) is phenyl and the more particular arylene group is bisphenol-A. In the case of the low molecular weight phosphates, the more preferred low molecular weight phosphate is bisphenol-A tetraphenyl diphosphate wherein n is 1, m is 1, X is bisphenol-A and the R's are phenyl with this more preferred low molecular weight phosphate having a molecular weight of about 693.
In the case of the high molecular weight phosphate, the most preferred is bisphenol-A phenyl polyphosphate having a molecular weight of about 10,056. In this most preferred high molecular weight phosphate of the above formula , the R's are phenyl groups, X is bisphenol-A, m is 1 and n is about 32.
In the practice of the invention, the thermoplastic resin employed herein can be any of the thermoplastic molding resins that can be molded by injection molding, compression molding, transfer molding, extrusion blow molding or profile extrusion. The preferred thermoplastic molding resins are aromatic polycarbonates, high impact polystyrenes, styrene containing copolymers and styrene containing graft copolymers such as acrylonitrile-butadiene-styrene (ABS) resins, polyphenylene ether resins, polyalkylene terephthalate resins such as polybutylene terephthalate, polyethylene terephphalate, and polypropylene terephthalate resins, polyether imide resins, polyether imide ester resins, polyamide resins, polyphenylsulfide resins, polyphenyl sulfones, polyimide resins and mixtures thereof. The most preferred resins are aromatic polycarbonates, blends of aromatic polycarbonates and ABS, blends of polyphenylene ethers and high impact polystyrenes, and polyether imides.
The amount of phosphate employed can be that amount of phosphate which renders the thermoplastic molding resin composition flame retardant while maintaining good properties of heat deflection temperature, impact resistance and flow. Preferable the composition of the invention contains about 3 to about 25 weight percent of the phosphate flame retardant based on the total weight of thermoplastic resin and phosphate flame retardant and preferably about 5 to about 20 weight percent thereof.
The flame retardant of this invention is a combination of a low molecular weight and a high molecular weight phosphate. The flame retardant consists essentially of about 10 to about 90 weight % of the low molecular weight phosphate and correspondingly 90 to about 10 weight % of the high molecular weight phosphate based on the weight of the flame retardant. Preferable the combination of phosphates consists essentially of about 40 to about 70 weight % of the low molecular weight phosphate and correspondingly about 60 to about 30 weight % of the high molecular weight phosphate. In addition, other additives may be employed with the composition of thi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Phosphate flame retardant polymers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Phosphate flame retardant polymers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Phosphate flame retardant polymers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3359049

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.