Pheumatic cradle

Beds – Mattress – Having confined gas

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C005S706000

Reexamination Certificate

active

06327727

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a therapeutic device for deep relaxation and restoration of human body homeostasis.
BACKGROUND OF THE INVENTION
The concept of therapeutic treatment with various devices is well known, and designed to provide static support for a human body and/or specific parts of the human body. Existing therapeutic devices use different physical principals. Some of them include mattresses adapted to provide proper alignment for joints of the spine, firm support devices for the whole back or neck or lower back, devices which use gravity or other forces for stretching, and medical equipment designed for specific positioning, etc. There are also devices having dynamic qualities designed for massage, including devices which have a monotonic rocking motion or vibration, which are designed to induce sleep-like cradles. Air mattresses are also known to support a sleeper thereon.
The present invention is related to devices with dynamic qualities and utilizes cyclic inflation and deflation of an air mattress to produce three dimensional motion to stimulate proprioceptors for inducing deep relaxation and restoring homeostasis, in a manner not previously known in the art.
THEORY
1. Nervous System and Stress
The following discussion is based on the book “Principals of Anatomy and Physiology” by Tortora and Grabowski.
The human being nervous system is structurally divided into two branches: Central nervous system (CNS) and Peripheral nervous system (PNS). CNS consists of the brain and spinal cord. The peripheral nervous system is in turn subdivided into Somatic nervous system (SNS) and Autonomic nervous system (ANS).
The SNS consists of sensory neurons that convey information from cutaneous and special sense receptors primarily in the head, body wall, and extremities to the CNS and motor neurons from the CNS that conduct impulses to skeletal muscles only.
The ANS consists of sensory neurons that convey information from receptors primarily in the viscera to the CNS and motor neurons from the CNS that conduct impulses to smooth muscle, cardiac muscle, and glands.
The motor portion of the ANS consists of two branches: Sympathetic nervous system and Parasympathetic nervous system. With few exceptions the viscera receive instructions from both. Usually, these two divisions have opposing actions. Process promoted by sympathetic neurons often involve expenditure of energy while those promoted by parasympathetic neurons restore and conserve body energy.
Homeostasis is a condition in which the body's internal environment remains within certain physiological limits. Homeostatic mechanisms attempt to counteract the everyday stresses of living. A stressor activates sympathetic nervous system responses such as:
The heart rate and the strength of contraction increase to circulate substances in the blood very quickly to the areas where they are needed to combat the stress.
Blood vessels supplying the skin and viscera (except the heart and lungs) constrict, while blood vessels supplying the skeletal muscles and brain dilate. This routes more blood to organs active in the stress responses while decreasing blood supply to organs that do not play an immediate active role.
The spleen contracts and discharges stored blood, which increases the volume of blood in the general circulation. Red blood cell production accelerates, and the ability of blood to clot increases.
The liver transforms large amounts of stored glycogen into glucose and releases it into the bloodstream. The glucose is broken down by cells to provide the energy needed to meet the stressor. This also raises body temperature and causes sweating.
The rate of breathing increases, and the respiratory passageways widen. This enables the body to acquire more oxygen, which is needed in the decomposition reactions of catabolism. It also allows the body to eliminate more carbon dioxide, which is produced during catabolism.
Production of saliva, stomach enzymes, and intestinal enzymes decrease since digestive activity is not essential for counteracting the stress.
Sympathetic impulses to adrenal medulla increase its secretion of epinephrine and norepinephrine. These hormones supplement and prolong many fight-flight responses. At the next stage in the stress response hypothalamic hormones will initiate a long-term reaction.
All these responses are designed for survival actions. But in modern life in many cases we are not allowed to turn to releasing actions, and thus we cannot disperse energy accumulated in the body by these responses. Day by day we train our sympathetic nervous systems to respond to negative thoughts and emotions. As for parasympathetic ones, they are left for an automatic function, relying on our natural resources.
One of the results of stress in action is higher muscle tone, or the small degree of the muscle contraction present while the muscle is at rest.
2. Proprioceptive Sensations
The following discussion is based on the book “Principals of Anatomy and Physiology”, Tortora, Grabowsky.
An awareness of activities of muscles, tendons, and joints and balance or equilibrium is provided by the proprioceptive (proprio=one's own) or kinesthetic (=motion) sense. It informs us of the degree to which muscles are contracted, the amount of tension created in the tendons, the change of position of a joint, and the orientation of the head relative to the ground and in response to the movements. Proprioception enables us to recognize the location and rate of movements of one body part in relation to others. It also allows us to estimate the weight of objects and determine the muscular work necessary to perform a task and to judge the position and movements of our limbs, without using our eyes.
Impulses for conscious proprioception pass along ascending tracts in the spinal cord, to the thalamus and from there to the cerebral cortex. The sensation is perceived in the somatosensory area in the parietal lobe of the cerebral cortex posterior to the central sulcus. At the sme time, proprioceptive impulses also pass to the cerebellum along the sinocerebellar tracts.
Proprioceptors include muscle spindles, tendon organs, and joint kinesthetic receptors. They are located within skeletal muscles, tendons, and joint capsules.
Muscle Spindles
Muscle spindles are specialized groupings of muscle fibers interspersed among regular sketetal muscle fibers and oriented parallel to them. A muscle spindle consists of 3 to 10 specialized muscle fibers called intrafusal muscle fibers that are partially enclosed in a spindle-shaped connective tissue capsule. The central part of an intrafusal fiber does not have the ability to contract, while the ends of this fiber does have the ability to contract through a motor neuron attached to the ends of the intrafusal fiber. The brain can regulate the length of the middle part of the intrafusal fiber by setting a level of sensitivity of the sensory neuron attached to it. This sets the tone of the muscle through the stretch reflex arc.
The stretch reflex results in the contraction of a muscle when it is stretched. Slight stretching of a muscle stimulates receptors in the muscle spindles. In response to the stretch, a muscle spindle produces one or more nerve impulses that propagates along a somatic sensory neuron through the posterior root of the spinal nerve into the spinal cord. The sensory neuron makes an excitatory synapse with a motor neuron in the anterior gray horn. If the excitation is strong enough, an impulse arises in the motor neuron and is conducted along its axon, which projects from the spinal cord into the anterior root. The axon terminals of the motor neuron form neuromuscular junctions with typical skeletal fuscle fibers of the same muscle that contains the activated muscle spindle. Once the nerve impulse reaches the stretched muscle, a muscle action potential is generated, and the muscle contracts. Thus muscle stretch is followed by contraction, which shortens the muscle that had been stretched.
Tendon Organs
Tendon organs (Golgi tendon organs) are

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pheumatic cradle does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pheumatic cradle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pheumatic cradle will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2564507

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.