Organic compounds -- part of the class 532-570 series – Organic compounds – Nitrogen attached directly or indirectly to the purine ring...
Reexamination Certificate
2002-02-19
2004-04-13
Shah, Mukund J. (Department: 1624)
Organic compounds -- part of the class 532-570 series
Organic compounds
Nitrogen attached directly or indirectly to the purine ring...
C544S301000, C544S302000, C544S303000
Reexamination Certificate
active
06720421
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to novel phenylurethane compounds and methods for producing them, novel asymmetric urea compounds and methods for producing them, barbituric acid derivatives, and diazo thermal recording materials containing the derivatives. Precisely, the present invention relates to novel phenylurethane compounds and methods for producing them; to novel asymmetric urea compounds produced from the phenylurethane compounds and methods for producing them; as well as to barbituric acid derivatives produced from the asymmetric urea compounds and useful in diazo thermal recording materials, and to a diazo thermal recording material containing the barbituric acid derivative and having good raw-stock storability before recording thereon and good image storability after recording thereon.
2. Description of the Related Art
Heretofore, urethane compounds have had many applications in various fields of, for example, synthetic materials and medicines. Concretely, those of high molecular weight are used, for example, for urethane rubber, pastes and insulating materials; and those of low molecular weight are, for example, for reagents in alcohol identification. Further, urethane compounds are used for reactants in protecting amino compounds, and for intermediates to be reacted with other amino compounds in urea-forming reactions.
For producing urethane compounds, for example, known are a method of reacting an isocyanate with an alcohol, and a method of condensing carbamoyl chloride with an alcohol. Concretely, they include phenylurethane compounds of which the polypeptide terminal is urethanated (
J. Med. Chem
., 33 (8), 2267-2283, 1990); phenylurethane compounds having a carboxyl group in the molecule (PCT. Int. Appl. 9800393, Jan. 8, 1998); and phenylurethane compounds produced through urethanation with an aniline derivative or with an alkyl-substituted aniline in which the number of carbon atoms constituting the alkyl group is smaller than 8 (Can. Pat. Appl. 2215585, Mar. 17, 1998).
Most amino compounds that have been heretofore used in production of urethane compounds are aniline derivatives and peptide derivatives. As opposed to these, there is no example of using amino compounds having a long-chain alkyl group in production of phenylurethanes. The reason is because the amino compounds of that type are poorly soluble in organic solvents, and do not disperse in reaction liquids, and therefore their reaction efficiency is low.
Despite the situation, however, phenylurethane compounds, if readily obtained from such amino compounds having a long-chain alkyl group on an industrial scale, will be useful.
On the other hand, for producing urea compounds, for example, one general method heretofore known in the art comprises reacting a chloroformate, carbamoyl chloride, phosgene, isocyanate or isothiocyanate with a suitable amino compound. It applies also to producing asymmetric urea compounds.
Most amino compounds that have been heretofore used in production of urea compounds are aniline derivatives and peptide derivatives. As opposed to these, there is no example of using amino compounds having a long-chain alkyl group in production of asymmetric urea compounds. The reason is because the amino compounds of that type are poorly soluble in organic solvents, and do not disperse in reaction liquids, and therefore their reaction efficiency is low.
Despite the situation, however, asymmetric urea compounds, if readily obtained from such amino compounds having a long-chain alkyl group on an industrial scale, will be useful.
Diazo compounds have an extremely high chemical activity, and they react readily with phenol derivatives and active methylene-having compounds that are generally referred to as couplers to form azo dyes. In addition, as sensitive to light, they decompose when exposed to light, and lose their activity. Accordingly, diazo compounds have been used for many years for optical recording materials, for example, typically for optical recording materials such as typically diazo copies (see
Principles of Photographic Science and Engineering
—Nonsilver Photography, edited by the Photographic Society of Japan, published by Corona Publishing CO., LTD., 1982, pp. 89-117, pp. 182-201).
These days, in addition, diazo compounds are applied also to recording materials that require image fixation, as they have the property of decomposing through exposure to light to lose their activity. One typical example is a photo-fixing, thermal recording material in which the recording layer contains a diazo compound and a coupler that are reacted under heat in accordance with an image signal applied thereto to thereby form the intended image and the image is then fixed through exposure to light (Koji Sato et al.,
the Journal of the Imaging Electronics Society of Japan
, Vol. 11, No. 4, 1982, pp. 290-296).
However, in the recording materials of the type that contain a diazo compound serving as a color-forming component therein, the chemical activity of the diazo compound is extremely high, and the diazo compound therein gradually decomposes under heat even in the dark to lose its activity Therefore, the drawback of the recording materials is that their shelf life is short. Various methods have heretofore been proposed for improving the stability of such diazo compounds. One of the most effective methods is to encapsulate a diazo compound into microcapsules.
Encapsulated in microcapsules, the diazo compound is isolated from water and bases that promote the decomposition of the compound. In that condition, therefore, the diazo compound is almost completely prevented from being decomposed, and the shelf life of recording materials that contain the diazo compound in microcapsules is significantly prolonged (Tomomasa Usami et al.,
The Journal of the Electrophotography Society of Japan
, Vol. 26, No. 2, 1987, pp. 115-125).
One general method for encapsulating a diazo compound into microcapsules is as follows: A diazonium salt is dissolved in a hydrophobic solvent (to form an oily phase), and this is added to an aqueous solution of a water-soluble polymer (aqueous phase), and emulsified and dispersed by the use of a homogenizer or the like. In the process, a monomer or a prepolymer to form microcapsule walls is added to either one or both of the oily phase and the aqueous phase so that it is polymerized in the interface between the oily phase and the aqueous phase to form a polymer wall around each emulsified particle of the diazonium salt to thereby encapsulate the diazonium salt into the thus-formed microcapsules.
The details of the method are described, for example, in Tomoji Kondo's
Microcapsules
(by Nikkan Kogyo Shinbun, 1970) and Tamotsu Kondo et al's
Microcapsules
(by Sankyo Publishing, 1977). For the microcapsule walls to be formed, various compounds are usable, including for example, crosslinked gelatin, alginates, celluloses, urea resins, urethane resins, melamine resins, and nylon resins.
In cases where microcapsule walls are made of urea resin or urethane resin that undergoes phase transition at its glass transition point and where the glass transition point of the microcapsule walls is higher than room temperature to some extent, the microcapsule walls are impervious to substances at room temperature but are pervious thereto at temperatures not lower than their glass transition point. Therefore, the microcapsules of the type are referred to as thermo-responsive microcapsules, and these are useful in thermal recording materials.
Specifically, a recording material having, on a support, a thermal recording layer that contains thermo-responsive microcapsules with a diazonium salt therein and contains a coupler and a base ensures long-term stability of the diazonium salt therein. When exposed to heat, it readily forms a color image thereon, and when exposed to light, the color image formed is fixed on it. As in the above, the technique of encapsulating a diazo compound into microcapsules makes it possible to significantly impro
Arai Sachiko
Arioka Daisuke
Fujita Akinori
Ikeda Kimi
Takeuchi Yohsuke
Shah Mukund J.
Tucker Zachary C.
LandOfFree
PHENYLURETHANE COMPOUNDS AND METHODS FOR PRODUCING SAME,... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with PHENYLURETHANE COMPOUNDS AND METHODS FOR PRODUCING SAME,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and PHENYLURETHANE COMPOUNDS AND METHODS FOR PRODUCING SAME,... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3271501