Phenylindoles for the treatment of HIV

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C548S465000, C548S484000, C544S143000, C514S235200, C514S418000

Reexamination Certificate

active

06710068

ABSTRACT:

FIELD OF THE INVENTION
This invention is in the area of phenylindoles that are useful for the treatment of HIV infection, and, in particular, phenylindoles that exhibit significant activity against resistant strains of HIV.
BACKGROUND OF THE INVENTION
In 1983, the etiological cause of AIDS was determined to be the human immunodeficiency virus (HIV). Numerous compounds have since been synthesized to combat the virus, designed to inhibit progression beyond various stages of the virus's lifecycle. A focal point in AIDS research efforts has been the development of inhibitors of human immunodeficiency virus (HIV-1) reverse transcriptase (RT), an enzyme responsible for the reverse transcription of the retroviral RNA to proviral DNA (Greene, W. C., New England Journal of Medicine, 1991, 324, 308-317; Mitsuya, H. et al., Science, 1990, 249, 1533-1544; De Clercq, E., J. Acquired Immune Defic. Syndr. Res. Human. Retrovirus, 1992, 8, 119-134). Promising inhibitors include nonnucleoside inhibitors (NNI), which bind to a specific allosteric site of HIV-1 RT near the polymerase site and interfere with reverse transcription by altering either the conformation or mobility of RT, thereby leading to noncompetitive inhibition of the enzyme (Kohlstaedt, L. A. et al., Science, 1992, 256, 1783-1790).
Several classes of compounds have been identified as NNI of HIV-1 RT. Examples include the following:
(a) 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymines (HEPT; Tanaka, H. et al., J. Med. Chem., 1991, 34, 349-357; Pontikis, R. et al., J. Med. Chem., 1997, 40, 1845-1854; Danel, K., et al., J. Med. Chem., 1996, 39, 2427-2431; Baba, M., et al., Antiviral Res, 1992, 17, 245-264);
(b) bis(heteroaryl)piperazines (BHAP; Romero, D. L. et al., J. Med. Chem., 1993, 36, 1505-1508);
(c) dihydroalkoxybenzyloxopyrimidine (DABO; Danel, K. et al., Acta Chemica Scandinavica, 1997, 51, 426-430; Mai, A. et al., J. Med. Chem., 1997, 40, 1447-1454);
(d) 2′-5′-bis-O-(tertbutyldimethylsilyl)-3′-spiro-5″-(4″-amino-1″, 2″-oxathiole-2″, 2″-dioxide) pyrimidines (TSAO; Balzarini, J. et al., Proc. Natl. Acad. Sci. USA, 1992, 89, 4392-4396);
(e) phenethylthiazolylthiourea (PETT) derivatives (Bell, F. W. et al., J. Med. Chem., 1995, 38, 4929-4936; Cantrell, A. S. et al., J. Med. Chem., 1996, 39, 4261-4274);
(f) tetrahydro-imidazo[4,5,1-jk][1,4]-benzodiazepine-2 (1H)-one and -thione (TIBO) derivatives (Pauwels, R. et al. Nature, 1990, 343, 470-474);
(g) alpha-anilinophenylacetamide (alpha-APA) derivatives (Pauwels, R. et al. Proceedings of the National Academy of Sciences USA, 1993, 90, 1711-1715); and
(h) indole derivatives (Williams et al., U.S. Pat. No. 5,527,819 (Jun. 18, 1996); and its counterpart PCT application PCT/US94/01694, published as WO 94/19321 on Sep. 1, 1994).
The indole derivatives identified by Williams et al., assigned to Merck & Co., in U.S. Pat. No. 5,527,819 received particular interest because of their ability to potently inhibit HIV reverse transcriptase. A number of these compounds displayed EC
90
s against HIV reverse transcriptase at concentrations as low as 2 micromolar. However, this work was not pursued, perhaps because HIV virus that had been exposed to other drugs was shown to be cross resistant to these indoles (Williams
et al.
, Journal of Medicinal Chemistry,
1993, 36(9), 1291-94).
The class of compounds disclosed in the '819 patent encompasses a large class of compounds represented generally by the following broad structural formula:
in which the variables X, Y, Z, R and R
6
were broadly defined to encompass a plethora of compound
S
. The patent presented examples for nearly one hundred of the compounds encompassed by the structure, and included several examples in which Z was —C(O)NH
2
, Y was SO
2
and R was phenyl or substituted phenyl.
U.S. Pat. No. 5,124,327, issued Jun. 23, 1992 to Greenlee et al. and assigned to Merck disclosed a class of compounds of the general formula above, in which X is H, R
6
is H, Y is S, and R is phenyl. The patent disclosed that the compounds act as reverse transcriptase inhibitors.
Indoles have been used for the treatment of a variety of diseases other than HIV. For example, Farina et al., in U.S. Pat. No. 5,981,525 (Nov. 9, 1999), disclose a complex array of indoles that are useful for the treatment of osteoporosis, because they reduce bone resorption by inhibiting osteoclast H
+
-ATPase.
U.S. Pat. No. 6,025,390, granted Feb. 15, 2000 to Farina et al., discloses another complex array of indole derivatives, referred to as heteroaromatic pentadienoic acid derivatives, and again suggest their use for the treatment of osteoporosis.
U.S. Pat. No. 5,489,685, granted Feb. 6, 1996, Houpis et al. discloses a similar set of compounds in the furo(2,3-B) pyridine carboxylic acid ester class, and specifically suggest their use for the treatment of HIV.
U.S. Pat. No. 5,945,440 to Kleinschroth et al. discloses a class of indolocarbazole amides, and proposes their use for a variety of diseases including cancer, viral diseases (including HIV), heart and blood vessel diseases, bronchopulmonary diseases, degenerative diseases of the central nervous system, inflammatory disorders, and other diseases.
Gunasekera et al., in U.S. Pat. No. 4,866,084 (Sep. 12, 1989), disclose a class of bisindole alkaloid compounds, and state that the compounds are useful as antiviral and antitumor agents. The patent also describes the compounds' activity against HSV (herpes simplex virus).
Matsunaga et al., in U.S. Pat. No. 5,852,011 (Dec. 22, 1998), disclose a class of indole derivates substituted by a heteroaryl function and an amide function. The compounds are said to possess antitumor, antiviral, and antimicrobial properties.
Dykstra et al., in U.S. Pat. No. 5,935,982 disclose a class of bis-indoles and specifically propose their use for treating retroviral infections, and especially infection by HIV.
Domagala et al., in U.S. Pat. No. 5,929,114 (Jul. 27, 1999) disclose a class of arylthio and bithiobisarylamide compounds that reportedly have antibacterial and antiviral activity. The invention is said to encompass indole derivatives as well.
Pevear et al., in U.S. Pat. No. 5,830,894 (Nov. 3, 1998) disclose a class of triazinoindole derivatives that reportedly have pestivirus activity, most notably BVDV activity.
It is known that over a period of time, antiviral agents that are active against HIV induce mutations in the virus that reduce the efficacy of the drug. This was apparently the problem exhibited by the Merck indoles in U.S. Pat. No. 5,527,819 (Williams et al.,
Journal of Medicinal Chemistry,
1993, 36(9), 1291-94). Drug resistance most typically occurs by mutation of a gene that encodes for an enzyme used in viral replication, and most typically in the case of HIV, reverse transcriptase, protease, or DNA integrase. It has been demonstrated that the efficacy of a drug against HIV infection can be prolonged, augmented, or restored by administering the compound in combination or alternation with a second, and perhaps third, antiviral compound that induces a different mutation from that caused by the principle drug. Alternatively, the pharmacokinetics, biodistribution, or other parameters of a drug can be altered by such combination or alternation therapy. In general, combination therapy is typically preferred over alternation therapy since combination therapy induces multiple simultaneous pressures on the virus. However, one cannot predict which mutations will be induced in the HIV-1 genome by a given drug, whether the mutations are permanent or transient, or how an infected cell with a mutated HIV-1 sequence will respond to therapy with other agents in combination or alternation. These factors are exacerbated by the fact that there is a paucity of data on the kinetics of drug resistance in long-term cell cultures treated with modem antiretroviral agents.
Therefore, there is a need to improve the duration of antiviral efficacy produced by antiretroviral drugs, and to provide antiviral

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Phenylindoles for the treatment of HIV does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Phenylindoles for the treatment of HIV, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Phenylindoles for the treatment of HIV will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3193696

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.