Phenoxyethyl-thiourea-pyridine compounds and their use for...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C546S305000, C546S306000, C546S297000, C546S292000, C435S184000, C514S349000

Reexamination Certificate

active

06727265

ABSTRACT:

This application is a continuation of PCT/US00/41206, filed Oct. 18, 2000.
FIELD OF THE INVENTION
The invention relates to compounds as non-nucleoside inhibitors of reverse transcriptase that are effective against HIV, including mutant strains of HIV, and effective in the treatment of multi-drug resistant HIV infection.
BACKGROUND OF THE INVENTION
Agents currently used to treat HIV infection attempt to block replication of the HIV virus by blocking HIV reverse transcriptase or by blocking HIV protease. Three categories of anti-retroviral agents in clinical use are nucleoside analogs (such as AZT), protease inhibitors (such as nelfinavir), and the recently introduced non-nucleoside reverse transcriptase inhibitors (NNI), such as nevirapine.
The recent development of potent combination anti-retroviral regimens has significantly improved prognosis for persons with HIV and AIDS. Combination therapies may be a significant factor in the dramatic decrease in deaths from AIDS (a decrease in death rate as well as absolute number). The most commonly used combinations include two nucleoside analogs with or without a protease inhibitor.
Nevirapine is currently the only NNI compound which has been used in combination with AZT and/or protease inhibitors for the treatment of HIV. A new series of effective drug cocktails will most likely involve other NNIs in combination with nucleoside and protease inhibitors as a triple action treatment to combat the growing problem of drug resistance encountered in single drug treatment strategies.
The high replication rate of the virus unfortunately leads to genetic variants (mutants), especially when selective pressure is introduced in the form of drug treatment. These mutants are resistant to the anti-viral agents previously administered to the patient. Switching agents or using combination therapies may decrease or delay resistance, but because viral replication is not completely suppressed in single drug treatment or even with a two drug combination, drug-resistant viral strains ultimately emerge. Triple drug combinations employing one (or two) nucleoside analogs and two (or one) NNI targeting RT provide a very promising therapy to overcome the drug resistance problem. RT mutant strains resistant to such a triple action drug combination would most likely not be able to function.
Dozens of mutant strains have been characterized as resistant to NNI compounds, including L1001, K103N, V106A, E138K, Y181C and Y188H. In particular, the Y181C and K103N mutants may be the most difficult to treat, because they are resistant to most of the NNI compounds that have been examined.
Recently, a proposed strategy using a knock-out concentration of NNI demonstrated very promising results. The key idea in this strategy is to administer a high concentration of NNI in the very beginning stages of treatment to reduce the virus to undetectable levels in order to prevent the emergence of drug-resistant strains. The ideal NNI compound for optimal use in this strategy and in a triple action combination must meet three criteria:
1) very low cytotoxicity so it can be applied in high doses;
2) very high potency so it can completely shut down viral replication machinery before the virus has time to develop resistant mutant strains; and
3) robust anti-viral activity against current clinically observed drug resistant mutant strains.
Novel NNI designs able to reduce RT inhibition to subnanomolar concentrations with improved robustness against the most commonly observed mutants and preferably able to inhibit the most troublesome mutants are urgently needed. New antiviral drugs will ideally have the following desired characteristics: (1) potent inhibition of RT; (2) minimum cytotoxicity; and (3) improved ability to inhibit known, drug-resistant strains of HIV. Currently, few anti-HIV agents possess all of these desired properties.
Two non-nucleoside inhibitors (NNI) of HIV RT that have been approved by the U.S. Food and Drug Administration for licensing and sale in the United States are nevirapine (dipyridodiazepinone derivative) and delavirdine (bis(heteroaryl)piperazine (BHAP) derivative, BHAP U-90152). Other promising new non-nucleoside inhibitors (NNIs) that have been developed to inhibit HIV RT include dihydroalkoxybenzyloxopyrimidine (DABO) derivatives, 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT) derivatives, tetrahydrobenzondiazepine (TIBO), 2′,5′-Bis-O-(tert-butyidimethylsilyl)-3′-spiro-5″-(4″-amino-1″,2″-oxathiole-2″,2′-dioxide)pyrimidine (TSAO), oxathiin carboxanilide derivatives, quinoxaline derivatives, thiadiazole derivatives, and phenethyltilazolylthiourea (PETT) derivatives.
NNIs have been found to bind to a specific allosteric site of HIV-RT near the polymerase site and interfere with reverse transcription by altering either tile conformation or mobility of RT, thereby leading to a noncompetitive inhibition of the enzyme (Kohlstaedt, L. A. et al.,
Science
, 1992, 256, 1783-1790).
A number of crystal structures of RT complexed with NNIs have been reported (including &agr;-APA, TIBO, Nevirapine, and HEPT derivatives), and such structural information provides the basis for further derivatization of NNI aimed at maximizing binding affinity to RT. However, the number of available crystal structures of RT NNI complexes is limited.
SUMMARY OF THE INVENTION
The invention provides substituted and unsubstituted phenoxyethyl-thiourea-pyridine compounds which inhibit reverse transcriptase (RT) and which inhibit replication of a retrovirus, such as human immunodeficiency virus-1 (HIV-1).
The invention additionally provides a method for inhibiting reverse transcriptase activity of a retrovirus, such as HIV-1, comprising contacting the retrovirus with a compound of the invention. The invention additionally provides a method for inhibiting replication of a retrovirus, such as HIV-1, comprising contacting the retrovirus with a compound of the invention. The invention also provides a method for treating a retroviral infection in a subject, such as an HIV-1 infection, comprising administering a compound of the invention to the subject.
The invention also provides compositions comprising a compound or inhibitor of the invention, and optionally, an acceptable carrier. In one embodiment, the composition is a pharmaceutical composition.
DETAILED DESCRIPTION OF THE INVENTION
Definitions
All scientific and technical terms used in this application have meanings commonly used in the art unless otherwise specified. As used in this application, the following words or phrases have the meanings specified.
As used herein, a “retrovirus” includes any virus that expresses reverse transcriptase. Examples of a retrovirus include, but are not limited to, HIV-1, HIV-2, HTLV-I, HTLV-II, FeLV, FIV, SIV, AMV, MMTV, and MoMuLV.
As used herein, “reverse transcriptase (RT)” refers to an enzyme having a non-nucleoside inhibitor (NNI) binding site similar to that of HIV-1 RT and to which ligands which bind the composite binding pocket of the invention bind.
As used herein, “reverse transcriptase (RT) activity” means the ability to effect reverse transcription of retroviral RNA to proviral DNA. One means by which RT activity can be determined is by measuring viral replication. One measure of viral replication is the p24 assay described herein.
As used herein, a compound that “inhibits replication of human immunodeficiency virus (HIV)” means a compound that, when contacted with HIV-1, for example, via HIV-infected cells, effects a reduction in the amount of HIV-1 as compared with untreated control. Inhibition of replication of HIV-1 can be measured by various means known in the art, for example, the p24 assay disclosed herein.
As used herein, a “nonnucleoside inhibitor (NNI)” of HIV reverse transcriptase (HIV-RT) means a compound which binds to an allosteric site of HIV-RT, leading to noncompetitive inhibition of HIV-RT activity. Examples of nonnucleoside inhibitors of HIV-RT include, but are not limited to, tetrahydroimidazobenzodiazepin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Phenoxyethyl-thiourea-pyridine compounds and their use for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Phenoxyethyl-thiourea-pyridine compounds and their use for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Phenoxyethyl-thiourea-pyridine compounds and their use for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3224890

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.