Phased array communication system providing airborne...

Communications: directive radio wave systems and devices (e.g. – Directive – Including a steerable array

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S373000

Reexamination Certificate

active

06606055

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to phased array communication systems, and more particularly, this invention relates to aircraft communications using phased array antenna structures.
BACKGROUND OF THE INVENTION
Tactical aircraft require different communication systems that are operable in different bands at various wavelengths and frequencies. For example, a tactical aircraft may have one antenna and communication system for receiving beyond line-of-site satellite communications in the Ka band, such as communications at around 20 GHz. The aircraft also may use a second, separate antenna and communications system for medium to long range air-to-air crosslink communications with other aircraft, such as by using an upper and/or lower phased array antenna structure operable in the L band (e.g., around 1530-2700 MHz). The same L band communications equipment could possibly also be used for air-to-ground data link communications, or a separate, third antenna and communications system could be used for this air-to-ground data link. It is evident that the various communication and data link systems used by a tactical aircraft are arranged by using multiple, federated systems having one narrow band communication system for the air-to-air crosslink, a second narrow band communication system for the satellite communications, and perhaps even a third narrow band communications system for the air-to-ground data link. A drawback of such disparate communications systems on tactical aircraft is that these systems do not provide needed tactical weapon system data rates or operational range. They also require large and heavy antenna systems. The prior art focus on a single, communication function for each communications system increases the cost, adds complexity, and requires large and heavy antenna systems.
Further drawbacks are the numerous and different hardware components often used in these disparate prior art systems. Some of the larger systems have used cross slot antennae or blade antennae with narrow band/low data rate operation. Also, the use of single function hardware components for each air-to-air, air-to-ground or satellite communication system often requires a single, unique waveform for each system. Again, this is not advantageous because it adds complexity and requires additional hardware systems.
SUMMARY OF THE INVENTION
The present invention advantageously overcomes the drawbacks of the prior art communication systems using multiple and separate, narrow band systems. The present invention provides multiple and small phased array antenna structures deployed around an aircraft with a medium band to wideband, high data rate operation. The system of the present invention allows multiple, selectable functions for air-to-air crosslink communications, satellite receive communications, and air-to-ground data link communications. Waveforms can be selected for each communication function, and in one aspect of the invention, the communications occur at a satellite, downlink frequency band.
The system allows the use of a frequency spectrum and associated communication systems with the ability to connect to tactical aircraft, communication satellites, and ground users using a single hardware implementation. Phased array antenna structures are deployed around the aircraft for spherical coverage to ensure efficient communications with low probability of intercept (LPI) and use of standard Communications, Navigation and Identification (CNI) systems typically operable in the L band.
In accordance with one aspect of the present invention, a phased array communication system for an aircraft includes a plurality of phased array antenna structures disbursed around an aircraft in a manner to provide substantially spherical antenna coverage around the aircraft. Each phased array antenna structure has an n-element array and transmit/receive modules operatively connected to respective elements forming the n-element array. A beam forming network is operatively connected to the transmit/receive modules. An antenna interface unit is operatively connected to the beam forming network and converts communication signals between a satellite downlink frequency band and a communications band used by Communication, Navigation and Identification (CNI) components known to those skilled in the art for allowing (a) air-to-air crosslink communication; (b) satellite receive communications; and (c) air-to-ground data link communications at a satellite downlink frequency band. A communications transceiver is operatively connected to each antenna interface unit and receives and transmits communication signals within a communications band used by Communication, Navigation and Identification (CNI) components to and from the phased array antenna structures.
In another aspect of the present invention, the phased array communications system includes six phased array antenna structures, each providing +/− about 48 to about 59 degrees scan. In another aspect of the present invention, three phased array antenna structures each provide +/− about 65 to about 75 degrees scan.
Each phased array antenna structure further includes a controller operatively connected to each transmit/receive module for controlling the beam of a phased array antenna. The controller is operative for selecting between communication waveforms and protocol functions for air-to-air crosslink, satellite receive and air-to-ground data link communications. A communications waveform and protocol function is selected based on the need of a supported aircraft weapon system in yet another aspect of the present invention.
Each phased array antenna structure includes a power converter for converting power from an on-board power source into power suitable for operation of the phased array antenna structure. Each phased array antenna structure can be operable within the Ka band for receiving satellite communication signals. The antenna interface unit is operable for converting S band communication signals into a satellite downlink frequency band, in yet another aspect of the present invention. The satellite communication systems often work in the Ka band, a typical satellite downlink frequency band, and the one system of the present invention is operable in the satellite downlink frequency band.
In yet another aspect of the present invention, each phased array antenna structure can be about three inches diameter, having about 45 to about 55 antenna elements. Each transmit/receive module can further comprise respective transmit and receive phase shifters and amplifiers.
A method of communication to and from an aircraft is also disclosed and comprises the step of selecting communications waveform and protocol for one of (a) air-to-air crosslink communication; (b) satellite receive communications; and (c) air-to-ground data link communications at a satellite downlink frequency band using a plurality of phased array antenna structures disbursed around an aircraft in a manner to provide substantially spherical antenna coverage around the aircraft. Each phased array antenna structure has an n-element array, n transmit/receive modules operative connected to respective elements forming said n-element array, and a beam forming network operatively connected to the transmit/receive module. An antenna interface unit is operatively connected to the beam forming network for converting communication signals between a satellite downlink frequency band and a communications band used by Communication, Navigation and Identification (CNI) components. Communication signals can be received and transmitted within the communications band used by Communication, Navigation and Identification (CNI) components to and from the phased array antenna structures via a communications transceiver operatively connected to each antenna interface unit of each phased array antenna structure.


REFERENCES:
patent: 3747102 (1973-07-01), Cooper
patent: 5726666 (1998-03-01), Hoover et al.
patent: 6052098 (2000-04-01), Killen et al.
patent: 6072994 (2000-06-01), Phillips et a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Phased array communication system providing airborne... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Phased array communication system providing airborne..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Phased array communication system providing airborne... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3077157

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.