Phased array antenna including an antenna module temperature...

Communications: directive radio wave systems and devices (e.g. – Directive – Including a steerable array

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S372000, C342S157000

Reexamination Certificate

active

06593881

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the field of communications, and, more particularly, to phased array antennas.
BACKGROUND OF THE INVENTION
Temperature sensors are used in a wide variety of applications. Many different types of temperature sensors are commercially available, and the type of temperature sensor that will be used in any particular application will depend on several factors. For example, cost, space constraints, durability, and accuracy of the temperature sensor are all considerations that typically need to be taken into account.
One particular application in which a relatively high degree of accuracy may be required of a temperature sensor is in the field of antennas. More particularly, so-called “smart” antenna systems are commonly being used in both ground based applications (e.g., cellular antennas) and airborne applications (e.g., airplane or satellite antennas). Smart antenna systems, such as adaptive or phased array antennas, combine the outputs of multiple antenna elements with signal processing capabilities to transmit and/or receive communications signals. As a result, such antenna systems can vary the transmission or reception pattern of the communications signals in response to the signal environment to improve performance characteristics.
Of course, one of the factors which affects the signal environment is the temperature at which the antenna elements operate. Accordingly, to provide accurate phase shifting in a phased array antenna system, it is generally desirable to know the temperature of the antenna elements.
Typical prior art temperature sensors may include thermistors, resistance-temperature detectors (RTDs), and active temperature-dependent current sources, for example. One such active temperature-dependent current source is the AD590 by Analog Devices, Inc., of Norwood, Mass., which is further described in the data sheet entitled “Two-Terminal IC Temperature Transducer” from Analog Devices, Inc., published 1997. Yet, in typical prior art temperature sensor configurations, such devices may require a connection to additional circuitry such as multiplexors, analog conditioning circuitry, and analog-to-digital (A/D) converters, for example.
This additional circuitry not only increases the cost of the temperature sensor, but may also require a relatively large amount of space. Furthermore, to provide a high degree of accuracy, such sensors typically require careful calibration over the operating temperature environment. This may be particularly difficult to perform in spaceborne antennas, for example, where operating temperatures may vary significantly depending upon whether the antenna elements are shaded or in direct sunlight.
Because of issues such as cost, space savings, and the difficulty of calibration, many phased array antenna systems include only a single centralized temperature controller coupled to temperature sensing devices such as those listed above. For example, U.S. Pat. No. 5,680,141 to Didomenico et al. entitled “Temperature Calibration System for a Ferroelectric Phase Shifting Array Antenna” discloses a phased array antenna that includes a single temperature sensor circuit connected to a plurality of temperature sensors, each of which senses the temperature of a phase shifter separate from the phased array antenna elements. Each phase shifter is connected to a plurality of antenna elements. The temperature sensor circuit connects to a data processor system for inputting temperature information used to calculate calibration error factors.
One drawback of such phased array antennas is that all of the temperature compensation processing is performed by a central processor. Thus, if temperatures of a large number of phase shifters are to be monitored, the controller's task of managing temperature compensation may become significantly complicated and require a significant amount of processing resources. Communicating analog temperature data from a large number of sensors back to a central processor can also require a significant amount of wiring and analog processing.
SUMMARY OF THE INVENTION
In view of the foregoing background, it is therefore an object of the present invention to provide a phased array antenna which includes a relatively accurate and easily calibrated temperature sensor for sensing the temperature of phased array antenna modules.
This and other objects, features, and advantages of the present invention are provided by a phased array antenna including a plurality of phased array antenna modules and associated antenna elements. Further, at least one of the phased array antenna modules may also include a temperature sensor for measuring a temperature of the at least one phased array antenna module.
More particularly, the temperature sensor may include a capacitor and a circuit element coupled in series with the capacitor having a resistance that varies with temperature. The circuit element may be a thermistor, for example. Additionally, the at least one phased array antenna module may further include a module controller for charging/discharging the capacitor through the circuit element, measuring a charging/discharging time required to charge/discharge the capacitor to a predetermined threshold, and determining the temperature of the at least one phased array antenna module based upon the charging/discharging time.
The temperature sensor may also include at least one calibration resistor coupled between the module controller and the capacitor. The module controller may thus sequentially charge/discharge the capacitor through the circuit element and the at least one calibration resistor, measure respective charging/discharging times required to charge/discharge the capacitor to the predetermined threshold through the circuit element and the at least one calibration resistor, and determine the temperature of the at least one phased array antenna module based upon the charging/discharging times. For example, the at least one calibration resistor may include a high calibration resistor and a low calibration resistor.
Furthermore, the module controller may include a counter for measuring the charging/discharging time, a driver coupled to the circuit element for charging/discharging the capacitor, and a control logic circuit for controlling the driver. The module controller may also include a Schmitt hysteresis device coupled to the capacitor for determining when the capacitor has been charged/discharged to the predetermined threshold.
Additionally, the at least one phased array antenna module may include one or more phase shifters, attenuators, and/or delay devices coupled to the at least one antenna element. Moreover, the phased array antenna may further include an array controller coupled to the at least one phased array antenna module for controlling the phase shifter, attenuator, and/or delay devices based upon the temperature of the at least one phased array antenna module. The module controller may also control the phase shifter based upon the temperature of the at least one phased array antenna module.
A method aspect of the invention is for sensing a temperature of a phased array antenna module including a capacitor and a circuit element coupled in series with the capacitor and having a resistance that varies with temperature. The method may include charging/discharging the capacitor through the circuit element, measuring a charging/discharging time required to charge/discharge the capacitor to a predetermined threshold, and determining the temperature of the phased array antenna module based upon the charging/discharging time.
Yet another method aspect of the invention is for making a phased array antenna which includes positioning a plurality of phased array antenna modules in an array. Each phased array antenna module may include an associated antenna element. The method may also include providing a temperature sensor in at least one of the phased array antenna modules for measuring a temperature thereof.
More specifically, providing the temperature sensor may include coupling a cap

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Phased array antenna including an antenna module temperature... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Phased array antenna including an antenna module temperature..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Phased array antenna including an antenna module temperature... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3005206

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.