Phase shift masking for complex patterns with proximity...

Radiation imagery chemistry: process – composition – or product th – Radiation modifying product or process of making – Radiation mask

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C716S030000

Reexamination Certificate

active

07132203

ABSTRACT:
Techniques are provided for extending the use of phase shift techniques to implementation of masks used for complex layouts in the layers of integrated circuits, beyond selected critical dimension features. The method includes identifying features for which phase shifting can be applied, automatically mapping the phase shifting regions for implementation of such features, resolving phase conflicts which might occur according to a given design rule, and application of assist features and proximity correction features. The method includes applying an adjustment to a phase shift mask pattern including a first and a second phase shift window, and a control chrome with a control width, and/or to a trim mask pattern having a trim shape with a trim width based upon one or both of a rule based correction and a model based correction to improve a match between a resulting exposure pattern and a target feature.

REFERENCES:
patent: 5302477 (1994-04-01), Dao et al.
patent: 5308741 (1994-05-01), Kemp
patent: 5324600 (1994-06-01), Jinbo et al.
patent: 5364716 (1994-11-01), Nakagawa et al.
patent: 5472814 (1995-12-01), Lio
patent: 5523186 (1996-06-01), Lin et al.
patent: 5527645 (1996-06-01), Pati et al.
patent: 5537648 (1996-07-01), Liebmann et al.
patent: 5538815 (1996-07-01), Oi et al.
patent: 5565286 (1996-10-01), Lin
patent: 5573890 (1996-11-01), Spence
patent: 5595843 (1997-01-01), Dao
patent: 5620816 (1997-04-01), Dao
patent: 5635316 (1997-06-01), Dao
patent: 5636131 (1997-06-01), Liebmann et al.
patent: 5702848 (1997-12-01), Spence
patent: 5761075 (1998-06-01), Oi et al.
patent: 5766804 (1998-06-01), Spence
patent: 5766806 (1998-06-01), Spence
patent: 5807649 (1998-09-01), Liebmann et al.
patent: 5811211 (1998-09-01), Tanaka et al.
patent: 5858580 (1999-01-01), Wang et al.
patent: 5923562 (1999-07-01), Liebmann et al.
patent: 5923566 (1999-07-01), Galan et al.
patent: 5994002 (1999-11-01), Matsuoka
patent: 5998068 (1999-12-01), Matsuoka
patent: 6040892 (2000-03-01), Piorrat
patent: 6057063 (2000-05-01), Liebmann et al.
patent: 6066180 (2000-05-01), Kim et al.
patent: 6083275 (2000-07-01), Heng et al.
patent: 6130012 (2000-10-01), May et al.
patent: 6139994 (2000-10-01), Broeke et al.
patent: 6185727 (2001-02-01), Liebmann
patent: 6228539 (2001-05-01), Wang et al.
patent: 6251549 (2001-06-01), Levenson
patent: 6258493 (2001-07-01), Wang et al.
patent: 6335128 (2002-01-01), Cobb et al.
patent: 6338922 (2002-01-01), Liebmann et al.
patent: 6420074 (2002-07-01), Wang et al.
patent: 6436590 (2002-08-01), Wang et al.
patent: 6524752 (2003-02-01), Pierrat
patent: 6733929 (2004-05-01), Pierrat
patent: 2001/0000240 (2001-04-01), Wang et al.
patent: 2001/0028985 (2001-10-01), Wang et al.
patent: 2002/0127479 (2002-09-01), Pierrat
patent: 2002/0129327 (2002-09-01), Pierrat et al.
patent: 2002/0152454 (2002-10-01), Cote et al.
patent: 2002/0155363 (2002-10-01), Cote et al.
patent: 195 45 163 (1996-06-01), None
patent: 0 653 679 (1995-05-01), None
patent: 2333613 (1999-07-01), None
patent: 62067547 (1987-03-01), None
patent: 2-140743 (1990-05-01), None
patent: 1283725 (1991-02-01), None
patent: 6-67403 (1994-03-01), None
patent: 8051068 (1996-02-01), None
patent: 8-236317 (1996-09-01), None
patent: 2638561 (1997-04-01), None
patent: 2650962 (1997-05-01), None
patent: 10-133356 (1998-05-01), None
patent: 11-143085 (1999-05-01), None
patent: WO 98/12605 (1998-03-01), None
patent: WO 01/23961 (2001-04-01), None
patent: WO 02/03140 (2002-01-01), None
Sakata, Miwa, et al., “A Novel Radiation Sensitive Spin-on-glass Convertible into SiO2 and the Simple Fabrication Process Using It,” Jul. 26, 1993* (*ATI Bell Labs fax date), 3 pages.
Pistor, Thomas V., “Rigorous 3D Simulation of Phase Defects in Alternating Phase-Shifting Masks,” Proceedings of SPIE 4562-1038 (Mar. 2002), 13 pages.
Ogawa, Kiyoshi, et al., “Phase Defect Inspection by Differential Interference,” Proceedings of SPIE 4409-71, Apr. 26, 2001, 12 pages.
Rhyins, P., et al., “Characterization of Quartz Etched PSM Masks for KrF Lithography at the 100 nm node,” Proceedings of SPIE 4562 (Mar. 2002), 486-495.
Sewell, Harry, et al., “An Evaluation of the Dual Exposure Technique,” (As early as 2002*), 11 pages *The date is based on references 8&9 of the article of Feb. 16, 2001 and Feb. 27, 2002, respectively.
Wang, Ruoping, et al., “Polarized Phase Shift Mask: Concept, Design, and Potential Advantages to Photolithography Process and Physical Design,” Proceedings of SPIE 4754-105, Apr. 25, 2002, 12 pages.
Matsuoka, et al., “Application of Alternating Phase-Shifting Mask to 0.16um CMOS Logic Gate Patterns,” SPIE Proc. 3051, Mar. 10-14, 1997, 10 pages.
Semmier, Armin, et al., “Application of 3D EMF Simulation for Development and Optimization of Alternating Phase Shifting Masks,” Proc. of SPIE 4346-37, Mar. 1, 2001, 12 pages.
Wong, Alfred K., “Polarization Effects in Mask Transmission,” Proc. of SPIE 1674, Mar. 8, 1992, 8 pages.
Ackmann, Paul, et al., “Phase Shifting and Optical Proximity Corrections to improve CD control on Logic Devices in Manufacturing for sub 0.35 um J-Line,” Proc. of SPIE 3051-07, Mar. 1997, 8 pages.
Spence, C., et al., “Detection of 60 degree Phase defects on Alternating PSMs,” Proc. of SPIE 3412-73, Apr. 1998, 2 pages.
Sugawara, Minoru, et al., “Defect printability study of attenuated phase-shifting masks for specifying inspection sensitivity,” Proc. SPIE 2621-49, Sep. 1995, 16 pages.
Schmidt, Regina, et al., “Impact of Coma on CD Control for Multiphase PSM Designs,” Proc. SPIE 3334-02, Feb. 1998, 11 pages.
Erdmann, Andreas, “Topography effects and wave aberrations in advanced PSM-technology,” Proc. SPIE 4346-36, Mar. 1, 2001, 28 pages.
Granik, Yuri et al., “CD variation analysis technique and its application to the study of PSM mask misalignment,” Proc. SPIE 4186-94, Sep. 2000, 9 pages.
Ishiwata, Naoyuki, et al., “Fabrication of Phase-Shifting Mask,” Proc. SPIE 1463, Mar. 1991, 11 pages.
Levenson, Marc D., et al., “Phase Phirst! An improved strong-PSM paradigm,” Proc. SPIE 4186-42, Sep. 2000, 10 pages.
Levenson, Marc. D., et al., “SCAA mask exposures and Phase Phirst design for 110nm and below,” Proc. SPIE 4346-817, Sep. 2001, 10 pages.
Morikawa, Yasutaka, et al., “100nm-Alt.PSM structure discussion for ArF lithography,” Proc. SPIE 4409-22, Apr. 2001, 15 pages.
Ozaki, T., et al., “A 0.15um KrF Lithography for 1Gb DRAM Product using Highly Printable Patterns and Thin Resist Process,” 1998 Symposium on VLSI Technology, Jun. 1998, Honolulu, Hawaii, 2 pages.
Ronse, Kurt, et al., “Comparison of various phase shift strategies and application to 0.35 um ASIC designs,” Proc. SPIE 1927, 1993, 15 pages.
Rosenbluth, Alan E., et al., “Optimum Mask and Source Patterns to Print a Given Shape,” Proc. SPIE 4346-49, Mar. 1, 2001, 17 pages.
Suzuki, Akiyoshi, et al., “Multilevel imaging system realizing k1=0.3 lithography,” Proc. SPIE 3679-36, Mar. 1999, 13 pages.
Vandenberghe, G., et al., “(Sub-) 100nm gate patterning using 248nm alternating PSM,” Mentor Graphics White Paper, May 2001, 9 pages.
Fritze, M., et al., “100-nm Node Lithography With KrF?” Feb. 1, 2001, 14 pages.
Fukuda, Hiroshi, et al., “Patterning of Random Interconnect Using Double Exposure of Strong-Type PSMs,” Proc. SPIE 4346-695, Sep. 2001, 8 pages.
Ferguson, Richard A., et al., “Pattern-Dependent Correction of Mask Topography Effects for Alternating Phase-Shifting Masks,” Proc. SPIE 2440-349, May 1995, 12 pages.
Toublan, Olivier, et al., “Phase and Transmission Errors Aware OPC Solution for PSM: Feasibility Demonstration,” Proc. SPIE 4186-95, Sep. 13, 2000, 7 pages.
Yanagishita, Yuichiro, et al., “Phase-Shifting Photolithography Applicable to Real IC Patterns,” Proc. SPIE 1463

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Phase shift masking for complex patterns with proximity... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Phase shift masking for complex patterns with proximity..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Phase shift masking for complex patterns with proximity... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3702112

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.