Optical: systems and elements – Deflection using a moving element – Using a periodically moving element
Reexamination Certificate
2001-05-24
2002-10-22
Chan, Jason (Department: 2633)
Optical: systems and elements
Deflection using a moving element
Using a periodically moving element
Reexamination Certificate
active
06469816
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to telecommunications and more particularly to improving security and data transmission over fiber optic networks.
2. Background Information
In current fiber optic networks, an electronic data stream is fed to a laser amplitude modulator. The laser amplitude modulator typically pulses or alters the laser output to create an amplitude-modulated optical signal representative of the electronic data stream. The laser amplitude modulator and laser thus define a transmitter for transmitting the optical signal over an optical fiber, which is then received by a receiver. The receiver for the amplitude-modulated optical signals of the optical data typically includes a photodiode to convert the optical signals back into the electronic data stream.
The reading of the amplitude-modulated optical data signals using a photodiode is straightforward: the optical signals either produce an electric output at the photodiode or they do not. As a result, an output electronic data stream of zeros and ones is generated.
However, optical fiber may be tapped. The optical fibers can be spliced or even merely clamped so as to obtain optical signals from the fiber. It also may be possible to tap fibers without physically touching the optical fiber, for example by reading energy emanating or dissipating along the fiber. Amplitude-modulated optical signals, with their ease of detection from a photodiode, require that only a small amount of energy be tapped and passed through the photodiode in order to be converted into a tapped electronic data stream.
To confront non-secure optical and non-optical data lines, it has been known to use public key/private key encryption so that the data stream being transmitted is encoded in a format that makes it difficult to decode. Encryption however has several drawbacks, including the need for extra processing steps and time. Moreover, public key/private key encrypted data can be cracked, and the devices and algorithms for doing so are constantly improving.
In order to confront the problems of an amplitude-modulated system, U.S. Pat. No. 5,455,698 purports to disclose a secure fiber optic communications system based on the principles of a Sagnac interferometer. A data transmitter is a phase modulator for modulating counter-propagating light beams sent by a receiver round a loop. The receiver includes a light source, a beamsplitter for splitting light from the light source into counter-propagating light beams and for receiving the phase-modulated light beams, and an output detector. U.S. Pat. No. 5,223,967 describes a similar Sagnac-interferometer-based system operating over a single optical fiber.
The Sagnac-interferometer-based systems described in these patents have the disadvantage that they require the light to travel over a loop, whether back and forth in a single fiber or over a long length looped fiber. As a result, either the link budget for the single fiber must be doubled, reducing the data carrying capacity for a single fiber, or else a looped fiber with significant and expensive extra length of at least twice that of a single fiber must be laid between the transmitter and the receiver. Moreover, the receiver contains the light source, as opposed to the current installed base where the transmitter has the light source.
The Sagnac-interferometer-based systems thus are expensive to build and operate, and do not work particularly well with existing systems.
In addition, the Sagnac-interferometer-based systems in these patents desire a broadband low-coherence-length light source, for example from a light emitting diode. The light source thus typically generates light over a wavelength range of 10 nm or more.
U.S. Pat. No. 6,072,615 purports to describe a method for generating return-to-zero optical pulses using a phase modulator and optical filter. The RZ-pulse optical signal transmitted over the fiber is easily readable by a detector. The system is an amplitude-modulated system.
U.S. Pat. No. 5,606,446 purports to describe an optical telecommunications system employing multiple phase-compensated optical signals. Multiple interferometric systems are combined for the purpose of multiplexing various payloads on the same optical transmission path. The patent attempts to describe a method for providing fiber usage diversity using optical coherence length properties and a complex transmit/receive system. Each transmitter has a splitter, a plurality of fibers and a plurality of phase modulators to create the multiplexed signal, which is then demultiplexed at the receiver. This system is complex and expensive. Moreover, each phase-modulated light path is combined with a continuous wavelength base laser light path when sent over a telecommunications line, so that amplitude-modulated signals result.
As with U.S. Pat. No. 5,606,446, U.S. Pat. No 5,726,784 discloses creating an amplitude-modulated data stream by combining a phase-modulated light path with a continuous wave base laser light path. The ′446 patent describes lasers with wavelength variance accurate to less than 1 nm variance to create a WDM system.
SUMMARY OF THE INVENTION
An object of the present invention is to provide an improved security optical fiber transmission system and device. An alternate or additional object of the present invention is to provide high bandwidth optical data transport via transmission and recovery of phase-modulated optical signals. Yet another alternate or additional object of the present invention is to provide a simple yet secure phase-modulated optical data transmission system.
The present invention provides a fiber optic data transmission system comprising a transmitter having a laser emitting a continuous wave light, a phase modulator phase modulating the continuous wave light so as to create a phase-modulated information optical signal, and a telecommunications optical fiber connected to at least one receiver, the phase-modulator being connected to the telecommunications fiber so that the phase-modulated information optical signal is transmitted over the telecommunications fiber without recombining with the continuous wave light.
The use of a laser for a phase-modulated telecommunications system provides many advantages over the broadband light desired by the aforementioned Sagnac systems, including that the wavelength can be selected to match the optical fiber characteristics so that the light can be transmitted further distances. Also the lasers can be used in a wave-division-multiplexing system.
The laser preferably has a wavelength that does not vary by more than 2 nm, and most preferably does not vary by more than 1 nm. The lasers for example may be semiconductor diode lasers.
The system of the present invention may be similar for example to that disclosed in U.S. Pat. No. 09/765,153 filed Jan. 17, 2001, which describes as well the controller for the phase-modulator. This application is hereby incorporated by reference herein.
The present invention also provides a method for sending data in phase-modulated form over a telecommunications optical fiber comprising the steps of phase-modulating light from a laser so as to create a phase-modulated optical data stream, and sending the phase-modulated optical data stream over a telecommunications optical fiber in a phase-modulated form.
By sending the data in phase-modulated form, as opposed to amplitude modulated form, the data is must be read by an interferometer receiver. The use of such a receiver is easy to detect.
The present method preferably includes receiving the phase-modulated optical data and passing it through an interferometer.
The present method also preferably includes monitoring the optical fiber for a reduction in the amplitude of the phase-modulated signal.
The present invention also provides an optical fiber having a uni-directional optical signal carrying data solely in a phase-modulated form.
REFERENCES:
patent: 4754452 (1988-06-01), Henry
patent: 5223967 (1993-06-01), Udd
patent: 5239306 (1993-08-01), Siwi
Chan Jason
Davidson Davidson & Kappel LLC
Oyster Optics, Inc.
Payne David
LandOfFree
Phase-modulated fiber optic telecommunications system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Phase-modulated fiber optic telecommunications system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Phase-modulated fiber optic telecommunications system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2931104