Phase difference detection device and method for a position...

Communications: electrical – Continuously variable indicating – With particular transmitter

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S870360, C324S207160, C318S652000

Reexamination Certificate

active

06552666

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a phase difference detection device and method for use in position detection and a position detection system which are applicable to detection of both rotational positions and linear positions, such as a rotational position detector like a resolver or synchro, or a linear position detector based on a similar position detecting principle. More particularly, the present invention relates to a technique to detect an absolute position on the basis of an electric phase difference.
Among various induction-type rotational position detectors, one which produces two-phase (sine phase and cosine phase) outputs in response to a single-phase exciting input is commonly known as a “resolver”, and others which produce a three-phase (phases shifted 120° in relation to one another) outputs in response to a single-phase exciting input is known as a “synchro”. The oldest-fashioned resolvers have double-pole (sine pole and cosine pole) secondary windings provided on the stator in such a manner to cross each other at a mechanical angle of 90°, with a primary winding provided on the rotor (the relationship between the primary and secondary windings may be reversed depending on a desired application). However, the resolvers of this type are disadvantageous in that they require brushes for electric contact with the primary winding on the rotor. Brushless resolvers eliminating the need for such brushes are also known, where a rotary transformer is provided on the rotor in place of the brushes.
R/D converters have long been known as a detection system which obtains position detection data in digital form by use of a resolver which produces a two-phase (sine phase and cosine phase) outputs in response to a single-phase exciting input.
U.S. Pat. No. 3,648,042 discloses a technique which provides a rotation angle detection signal of a resolver as an analog voltage signal. Further, U.S. Pat. No. 4,011,440 discloses a technique which generates, on the basis of an output signal from a resolver, a cyclic square-wave signal having a pulse width corresponding to a detected angle and provides an angular rate on the basis of differences between pulse widths in individual cycles.
Another detection system is also known, where the resolver exciting method is modified to produce a single-phase output in response to two-phase exciting inputs so that an output signal containing an electric phase difference angle corresponding to rotational angle &thgr; is obtained to thereby derive digital data indicative of a detected angle &thgr;. Specific examples of the above-mentioned phase difference detection system are disclosed in U.S. Pat. Nos. 4,754,220, 4,297,698, etc.
As known in the art, windings of a sensor such as the resolver tend to undesirably change in impedance under the influence of ambient temperature change, and thus electric phase of A.C. signals induced in a secondary winding subtly fluctuates in response to the temperature change. Additionally, the electric phase of the induced A.C. signals received by a detection circuit varies under the influence of various factors other than a position-to-be-detected, such as ununiform wiring lengths between the windings of the sensor and the detection circuit and delays in various circuit operations. If the phase variation based on the various factors, other than the position-to-be-detected, such as the temperature change is expressed by “±d” for convenience of description, in the former-type detection system, i.e., the R/D converter, the variation amount “±d” is in effect cancelled out and hence has no effect at all on the detecting accuracy. Therefore, it can be seen that the detection system like the R/D converter is a high-accuracy system insusceptible to adverse influence of the ambient temperature change. However, because this detection system is based on a so-called “successive incrementing method” where, as noted earlier, a reset trigger signal is periodically applied to a sequential phase generation circuit at optional timing to reset a phase angle &phgr; to “0” so as to initiate incrementing of the angle &phgr;, and the incrementing of the phase angle &phgr; is stopped upon arrival at “0” of the output of a subtracter to thereby obtain digital data indicative of a detected angle &thgr;, it has to wait for a period from the time when the reset trigger is given to the time when the phase angle &phgr; coincides with the detected angle &thgr; and hence presents poor response characteristics.
On the other hand, in the latter-type detection system, the phase variation amount “±d” based on the non-positional factors (other than the position-to-be-detected) such as temperature change presents a very significant problem that the variation “±d” directly appears as a detection error.
The scheme of generating phase detection data in digital representation permits a high-accuracy detection, but is disadvantageous in that it would require an increased number of detection-signal transmitting lines if the digital detection data are transmitted directly in a parallel fashion.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a phase difference detection device and method for use with a position detector which can perform a high-accuracy position detection without being influenced by unwanted phase variation caused by various factors, other than a position-to-be-detected, such as impedance change in a position sensor due to temperature change, which presents superior high-speed response characteristics, or which can significantly simplify detection-signal transmission lines and also minimize adverse influences of external disturbances, such as temperature changes, on the detection signal on the transmission lines.
In order to accomplish the above-mentioned object, the present invention provides a phase difference detection device for a position detector, said position detector being excited by a predetermined reference signal to generate first and second A.C. output signals, said first A C. output signal having been amplitude-modulated using, as an amplitude coefficient, a first function value corresponding to a position-to-be-detected, and said second A.C. output signal having been amplitude-modulated using, as an amplitude coefficient, a second function value corresponding to the position-to-be-detected, said phase difference detection device comprises: a phase shift circuit operatively coupled to said position detector to shift an electric phase of said received first A.C. output signal by a predetermined angle; a first circuit operatively coupled to said phase shift circuit and said position detector to perform an operation between an output signal of said phase shift circuit and said second A.C. output signal so as to synthesize a first data signal having an electric phase angle shifted in one of positive and negative directions in correspondence to the position-to-be-detected; a second circuit operatively coupled to said phase shift circuit and said position detector to perform an operation between an output signal of said phase shift circuit and said second A.C. output signal so as to synthesize a second data signal having an electric phase angle shifted in other of positive and negative directions in correspondence to the position-to-be-detected; a first operation circuit operatively coupled to said first circuit to measure an electric phase difference between said predetermined reference signal and said first data signal to obtain first phase data; a second operation circuit operatively coupled to said second circuit to measure an electric phase difference between said predetermined reference signal and said second data signal to obtain second phase data; a third operation circuit operatively coupled to said first and second operation circuit to calculate position detection data corresponding to the position-to-be-detected on the basis of said first and second phase data; and a pulse-width modulation circuit coupled to said third operation circui

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Phase difference detection device and method for a position... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Phase difference detection device and method for a position..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Phase difference detection device and method for a position... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3093628

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.