Phase change solid imaging material

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C523S161000, C524S199000, C524S230000, C524S270000, C524S272000, C524S487000, C524S507000, C524S514000

Reexamination Certificate

active

06395811

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to waxes made by reacting isocyanates with selected nucleophiles such as alcohol reactants and amines. The nucleophiles are used to achieve certain desirable properties in urethane/polyamide formulations. The present invention also relates to solid imaging materials used in the rapid prototyping industry, as well as to phase change ink compositions, both generally and in specific compositions, containing such resins and/or waxes. Still further, the present invention relates to the process of using such phase change compositions containing such resins and/or waxes in a printing device.
2. Description of the Relevant Art
In general, phase change materials or inks (sometimes referred to as “hot melt inks”) are in the solid phase at ambient temperature, but exist in the liquid phase at the elevated operating temperature of an ink jet printing device. At the ink jet operating temperature, droplets of liquid ink are ejected from the printing device and, when the ink droplets contact the surface of the printing media, they quickly solidify to form a predetermined pattern of solidified ink drops. Phase change inks have also been investigated for use in other printing technologies such as gravure printing as referenced in U.S. Pat. No. 5,496,879 and German patent publications DE 4205636AL and DE 4205713AL assigned to Siegwert Farbenfabrik Keller, Dr. Rung and Co.
Phase change inks for color printing generally comprise a phase change ink carrier composition which is combined with a phase change ink compatible colorant. Preferably, a colored phase change ink will be formed by combining the above-described ink carrier composition with compatible subtractive primary colorants. Subtractive primary colored phase change inks can comprise four component dyes, namely, cyan, magenta, yellow and black. U.S. Pat. Nos. 4,889,506; 4,889,761; and 5,372,852 teach that the subtractive primary colorants employed typically may comprise dyes from the classes of Color Index (C.I.) Solvent Dyes, Disperse Dyes, modified Acid and Direct Dyes, and a limited number of Basic Dyes. As exemplified in U.S. Pat. No. 5,221,335, assigned to Coates Electrographics Ltd., the colorants can also include pigments. U.S. Pat. No. 5,621,022, assigned to Tektronix, Inc., is directed to the use of a specific class of polymeric dyes in phase change ink compositions.
Phase change inks are desirable for ink jet printers since they remain in a solid phase at room temperature during shipping, long-term storage, and the like. Also, the problems associated with nozzle clogging due to ink evaporation are largely eliminated, thereby improving the reliability of ink jet printing. Furthermore, in the above-noted prior art phase change ink jet printers where the ink droplets are applied directly onto the printing medium, the droplets solidify immediately upon contact with the substrate, migration of ink along the printing medium is prevented and dot quality is improved. More recently, the use of phase change solid imaging material with ink jet print heads has permitted the rapid prototyping and manufacturing industry to increase speed, reduce costs and improve part quality. This is also true of the processes and solid imaging compositions described herein.
In addition to the above-referenced U.S. patents, many other patents describe materials for use in phase change ink jet inks. Some representative examples include U.S. Pat. Nos. 3,653,932; 4,390,369; 4,484,948; 4,684,956; 4,851,045; 4,889,560; 5,006,170; and 5,151,120; as well as EP Application Nos. 0187352 and 0206286. These materials can include paraffins, microcrystalline waxes, polyethylene waxes, ester waxes, fatty acids and other waxy materials, fatty amide-containing materials, sulfonamide materials, resinous materials made from different natural sources (tall oil rosins and rosin esters are an example) and many synthetic resins, oligomers, polymers and co-polymers.
Separately, PCT patent application WO 94/14902, which was published on Jul. 7, 1994 and is assigned to Coates Brothers PLC, teaches a hot melt ink containing a colorant and, as a vehicle for the hot melt ink, an oligourethane having a melting point of at least 65° C. The oligourethane is obtained by reacting an aliphatic or aromatic diisocyanate with at least a stoichiometric amount of either: (i) a monohydric alcohol component; or (ii) a monohydric alcohol component; or (iii) a monohydric alcohol component, followed by a dihydric alcohol component, followed by a monohydric alcohol component.
This PCT patent application defines the monohydric alcohol component as either a monohydric aliphatic alcohol (e.g. C
1
to C
22
alcohols), an etherified dihydric aliphatic alcohol [e.g. propylene glycol methyl ether (PGME), dipropylene glycol methyl ether (DPGME), ethylene glycol butyl ether (EGBE), diethylene glycol butyl ether (DPGBE), tripropylene glycol butyl ether (PGBE) and propylene glycol phenyl ether (PPL)]; esterified dihydric aliphatic alcohol [e.g. the esterifying acid may be an ethylenically unsaturated acid (such as acrylic acid or methacrylic acid), thereby introducing ethylenic unsaturation into the oligourethane and rendering it suitable for eventual further additional polymerization (curing) after having been applied to a substrate by hot-melt printing], or dihydric polyakylene glycol. This PCT patent application defines the monohydric alcohol component as either a monohydric aliphatic alcohol (e.g. C
1
to C
22
alcohols), an etherified dihydric aliphatic alcohol [e.g. propylene glycol methyl ether (PGME), dipropylene glycol methyl ether (DPGME), ethylene glycol butyl ether (EGBE), diethylene glycol butyl ether (DPGBE), tripropylene glycol butyl ether (PGBE) and propylene glycol phenyl ether (PPL)]; esterified dihydric aliphatic alcohol [e.g. the esterifying acid may be an ethylenically unsaturated acid (such as acrylic acid or methacrylic aid), thereby introducing ethylenic unsaturation into the oligourethane and rendering it suitable for eventual further additional polymerization (curing) after having been applied to a substrate by hot-melt printing], or dihydric polyalkylene glycol. This PCT application further defined the dihydric alcohol component as a dihydric aliphatic alcohol or a dihydric polyalkylene glycol [e.g. ethylene glycol, polyethylene glycol (PEG 1500), polypropylene glycol (PPG 750), 1000 and 1500), trimethylene glycol, dipropylene glycol, methylpropanediol and 1.6-hexanediol].
Another PCT patent application, WO 97/12003 also assigned to Coates Brothers PLC, discloses hot melt ink jet base materials that are urethane-amide reaction products obtained from the reaction of isocyanates with one or more functional amides. The urethane-amides are intended to have improved compatibility with viscosity modifying additives.
Also, PCT Patent Application WO 94/04619, assigned to the General Electric Company, teaches the use of ionomeric materials in combination with image forming agents to form a hot melt ink jet ink. The ionomeric materials can include many different types of copolymeric or polymeric ionomers, including carboxyl-functional polyurethanes prepared from a diol or polyol and a hydroxyl acid. Many other carrier materials and colorants for the image forming agent of the invention are included in this PCT application.
Phase change materials, whether used in ink jet printing or three-dimensional rapid prototyping and manufacturing applications, have a need for improved toughness. Toughness can be imparted to formulations by use of higher molecular weight resins. However, these higher molecular weight resins concomitantly impart greater viscosity to formulations, thereby making them unsuitable for jetting from ink jet print heads.
Phase change materials can also have a shrinkage problem upon solidification. In printing applications this can manifest itself in cracking of the ink on the final receiving substrate, or through a perceived lack of toughness by the p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Phase change solid imaging material does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Phase change solid imaging material, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Phase change solid imaging material will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2900826

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.