Phase change inks containing colorant compounds

Compositions: coating or plastic – Coating or plastic compositions – Marking

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C106S031610, C523S160000, C524S590000, C524S570000, C524S556000

Reexamination Certificate

active

06835238

ABSTRACT:

BACKGROUND
The present invention is directed to phase change inks. More specifically, the present invention is directed to hot melt or phase change inks containing specific colorant compounds. One embodiment of the present invention is directed to a phase change ink carrier and a colorant compound of the formula
wherein M is either (1) a metal ion having a positive charge of +y wherein y is an integer which is at least 2, said metal ion being capable of forming a compound with at least two
chromogen moieties, or (2) a metal-containing moiety capable of forming a compound with at least two
chromogen moieties, z is an integer representing the number of
chromogen moieties associated with the metal and is at least 2, R
1
, R
2
, R
3
, and R
4
each, independently of the others, is (i) a hydrogen atom, (ii) an alkyl group, (iii) an aryl group, (iv) an arylalkyl group, or (v) an alkylaryl group, wherein R
1
and R
2
can be joined together to form a ring, wherein R
3
and R
4
can be joined together to form a ring, and wherein R
1
, R
2
, R
3
, and R
4
can each be joined to a phenyl ring in the central structure, a and b each, independently of the others, is an integer which is 0, 1, 2, or 3, c is an integer which is 0, 1, 2, 3, or 4, each R
5
, R
6
, and R
7
, independently of the others, is (i) an alkyl group, (ii) an aryl group, (iii) an arylalkyl group, (iv) an alkylaryl group, (v) a halogen atom, (vi) an ester group, (vii) an amide group, (viii) a sulfone group, (ix) an amine group or ammonium group, (x) a nitrile group, (xi) a nitro group, (xii) a hydroxy group, (xiii) a cyano group, (xiv) a pyridine or pyridinium group, (xv) an ether group, (xvi) an aldehyde group, (xvii) a ketone group, (xviii) a carbonyl group, (xix) a thiocarbonyl group, (xx) a sulfate group, (xxi) a sulfide group, (xxii) a sulfoxide group, (xxiii) a phosphine or phosphonium group, (xxiv) a phosphate group, (xxv) a mercapto group, (xxvi) a nitroso group, (xxvii) an acyl group, (xxviii) an acid anhydride group, (xxix) an azide group, (xxx) an azo group, (xxxi) a cyanato group, (xxxii) an isocyanato group, (xxxiii) a thiocyanato group, (xxxiv) an isothiocyanato group, (xxxv) a urethane group, or (xxxvi) a urea group, wherein R
5
, R
6
, and R
7
can each be joined to a phenyl ring in the central structure,
R
8
, R
9
, and R
10
each, independently of the others, is (i) a hydrogen atom, (ii) an alkyl group, (iii) an aryl group, (iv) an arylalkyl group, or (v) an alkylaryl group, provided that the number of carbon atoms in R
1
+R
2
+R
3
+R
4
+R
5
+R
6
+R
7
+R
8
+R
9
+R
10
is at least about 16, Q

is a COO

group or a SO
3

group, d is an integer which is 1, 2, 3, 4, or 5, A is an anion, and CA is either a hydrogen atom or a cation associated with all but one of the Q

groups.
In general, phase change inks (sometimes referred to as “hot melt inks”) are in the solid phase at ambient temperature, but exist in the liquid phase at the elevated operating temperature of an ink jet printing device. At the jet +operating temperature, droplets of liquid ink are ejected from the printing device and, when the ink droplets contact the surface of the recording substrate, either directly or via an intermediate heated transfer belt or drum, they quickly solidify to form a predetermined pattern of solidified ink drops. Phase change inks have also been used in other printing technologies, such as gravure printing, as disclosed in, for example, U.S. Pat. No. 5,496,879 and German Patent Publications DE 4205636AL and DE 4205713AL, the disclosures of each of which are totally incorporated herein by reference.
Phase change inks for color printing typically comprise a phase change ink carrier composition which is combined with a phase change ink compatible colorant. In a specific embodiment, a series of colored phase change inks can be formed by combining ink carrier compositions with compatible subtractive primary colorants. The subtractive primary colored phase change inks can comprise four component dyes, namely, cyan, magenta, yellow and black, although the inks are not limited to these four colors. These subtractive primary colored inks can be formed by using a single dye or a mixture of dyes. For example, magenta can be obtained by using a mixture of Solvent Red Dyes or a composite black can be obtained by mixing several dyes. U.S. Pat. No. 4,889,560, U.S. Pat. No. 4,889,761, and U.S. Pat. No. 5,372,852, the disclosures of each of which are totally incorporated herein by reference, teach that the subtractive primary colorants employed can comprise dyes from the classes of Color Index. (C.I.) Solvent Dyes, Disperse Dyes, modified Acid and Direct Dyes, and Basic Dyes. The colorants can also include pigments, as disclosed in, for example, U.S. Pat. No. 5,221,335, the disclosure of which is totally incorporated herein by reference. U.S. Pat. No. 5,621,022, the disclosure of which is totally incorporated herein by reference, discloses the use of a specific class of polymeric dyes in phase change ink compositions.
Phase change inks have also been used for applications such as postal marking, industrial marking, and labelling.
Phase change inks are desirable for ink jet printers because they remain in a solid phase at room temperature during shipping, long term storage, and the like. In addition, the problems associated with nozzle clogging as a result of ink evaporation with liquid ink jet inks are largely eliminated, thereby improving the reliability of the ink jet printing. Further, in phase change ink jet printers wherein the ink droplets are applied directly onto the final recording substrate (for example, paper, transparency material, and the like), the droplets solidify immediately upon contact with the substrate, so that migration of ink along the printing medium is prevented and dot quality is improved.
Compositions suitable for use as phase change ink carrier compositions are known. Some representative examples of references disclosing such materials include U.S. Pat. No. 3,653,932, U.S. Pat. No. 4,390,369, U.S. Pat. No. 4,484,948, U.S. Pat. No. 4,684,956, U.S. Pat. No. 4,851,045, U.S. Pat. No. 4,889,560, U.S. Pat. No. 5,006,170, U.S. Pat. No. 5,151,120, U.S. Pat. No. 5,372,852, U.S. Pat. No. 5,496,879, European Patent Publication 0187352, European Patent Publication 0206286, German Patent Publication DE 4205636AL, German Patent Publication DE 4205713AL, and PCT Patent Application WO 94/04619, the disclosures of each of which are totally incorporated herein by reference. Suitable carrier materials can include paraffins, microcrystalline waxes, polyethylene waxes, ester waxes, fatty acids and other waxy materials, fatty amide containing materials, sulfonamide materials, resinous materials made from different natural sources (tall oil rosins and rosin esters, for example), and many synthetic resins, oligomers, polymers, and copolymers.
British Patent Publication GB 2 311 075 (Gregory et al.), the disclosure of which is totally incorporated herein by reference, discloses a compound of the formula
wherein X
1
is an ester group or an amide group (such as of a carboxylic or sulfonic acid) or a fatty amine salt of a sulfonic acid, each X
2
independently is a substituent, m has a value of from 0 to 2, Y
1
and Y
2
are each independently H, alkyl, or halo, each Z independently is an ester or amide group, and A

is on anion. The compound is useful as a colorant for toners, D2T2 printing, plastics, polyesters, nylons, and inks, especially ink jet or hot melt inks.
“Rhodamine Dyes and Related Compounds. XV. Rhodamine Dyes with Hydroaromatic and Polymethylene Radicals,” I. S. Ioffe et al.,
Zh. Organ. Khim
. (1965), 1(3), 584-6, the disclosure of which is totally incorporated herein by reference, discloses a process wherein heating dichlorofluoran with ZnCl
2
—ZnO and the appropriate amine for 3 hours at 220° followed by treatment with aqueous HCl gave N,N′-dicyclohexylrhodamine-HCl, m. 180-5°, N,N′-di(tetramethylene)rho

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Phase change inks containing colorant compounds does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Phase change inks containing colorant compounds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Phase change inks containing colorant compounds will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3304821

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.