Pharmaceutical preparations of glutathione and methods of...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S018700

Reexamination Certificate

active

06204248

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the field of reduction/oxidation (redox) potential altering pharmaceutical preparations, and methods for administration thereof, and more particularly to the use of the antioxidant agent glutathione as a cellular redox altering therapy.
BACKGROUND OF THE INVENTION
The ubiquitous tripeptide L-glutathione (GSH) (gamma-glutamyl-cysteinyl-glycine), is a well known biological antioxidant, and in fact is believed to be the primary intracellular antioxidant for higher organisms. When oxidized, it forms a dimer (GSSG), which may be recycled in organs having glutathione reductase. Glutathione may be transported through membranes by the sodium-dependent glutamate pump. Tanuguchi, N., et al. Eds.,
Glutathione Centennial
, Academic Press, New York (1989), expressly incorporated herein by reference.
GSH is known to function directly or indirectly in many important biological phenomena, including the synthesis of proteins and DNA, transport, enzyme activity, metabolism, and protection of cells from free-radical mediated damage. GSH is one of the primary cellular antioxidants responsible for maintaining the proper oxidation state within the body. GSH is synthesized by most cells, and is also supplied in the diet. GSH has been shown to recycle oxidized biomolecules back to their active, reduced forms.
Because of the existing mechanisms for controlling interconversion of reduced and oxidized glutathione, an alteration of the level of reduced glutathione (GSH), e.g., by administration of GSH to an organism will tend to shift the cells of the organism to a more reduced redox potential. Likewise, subjecting the organism to oxidative stress or free radicals will tend to shift the cells to a more oxidized potential. It is well known that certain cellular processes are responsive to redox potential.
Reduced glutathione (GSH) is, in the human adult, produced from oxidized glutathione (GSSG) primarily by the liver, and to a smaller extent, by the skeletal muscle, red blood cells, and white cells. About 80% of the 8-10 grams glutathione produced daily is produced by the liver and distributed through the blood stream to the other tissues.
A deficiency of glutathione in cells may lead to excess free radicals, which cause macromolecular breakdown, lipid peroxidation, buildup of toxins, and ultimately cell death. Because of the importance of glutathione in preventing this cellular oxidation, glutathione is continuously supplied to the tissues. However, under certain conditions, the normal, physiologic supplies of glutathione are insufficient, distribution inadequate or local oxidative demands too high to prevent cellular oxidation. Under certain conditions, the production of and demand for glutathione are mismatched, leading to insufficient levels on an organismal level. In other cases, certain tissues or biological processes consume glutathione so that the intracellular levels are suppressed. In either case, by increasing the serum levels of glutathione, increased amounts may be directed into the cells. In facilitated transport systems for cellular uptake, the concentration gradient which drives uptake is increased.
As with all nutrients, eating or orally ingesting the nutrient would generally be considered a desired method for increased body levels thereof. Thus, attempts at oral glutathione treatments were known, and indeed the present inventors hereof previously suggested oral glutathione administration for various indications. The protocols for administration of glutathione, however, were not optimized and therefore the bioavailability of the glutathione was unassured and variable. Prior pharmaceutical attempts by others to safely, effectively and predictably raise intracellular GSH through oral therapy with GSH have not met with demonstrated success. Experts generally believe that beneficial physiological effects of orally administered glutathione are difficult or impossible to achieve, or the efficiency is so low as to make supplementation by this route unproductive.
Because of the poor or variable results obtained, the art generally teaches that oral administration of glutathione is ineffective, forcing administration or supplementation by other routes, principally intravenously, but also by alveolar inhalation. Orally absorbed prodrugs and precursors have also been proposed or used. A known pharmacological regimen provides intravenous glutathione in combination with another agent, such as cis-platinum (a free radical associated metal drug), doxorubicin, or daunorubicin (free radical associated drugs which interact with nucleic acid metabolism), which produced toxic side effects related to free radical reactions.
The ability to harness GSH, which is a powerful, but safe substance, into an effective oral pharmaceutical had not been accomplished in the past, because of molecular instability, poor gastrointestinal absorption through existing protocols and resulting inability to reliably effect increases in intracellular GSH levels. Administering sufficient amounts to achieve physiological benefit using known oral administration protocols might lead to cysteine related kidney stones, gastric distress or flatulence.
Glutathione is relatively unstable in alkaline or oxidative environments, and is not absorbed by the stomach. It is believed that glutathione is absorbed, after oral administration, if at all, in the latter half of the duodenum and the beginning of the jejunum. It was also believed that orally administered glutathione would tend to be degraded in the stomach, and that it is particularly degraded under alkaline conditions by desulfurases and peptidases present in the duodenum. Thus, known protocols for oral administration of glutathione involved administered with meals or after eating to buffer pH extremes and dilute degradative enzymes. This protocol, however, has the effect of diluting the glutathione and delaying absorption. Studies directed at determining the oral bioavailability of glutathione under such circumstances showed poor absorption, and therefore such administration was seen as of little benefit.
Therefore, while oral dosage forms of glutathione were known, the clinical benefits of these formulations were unproved and, given the lack of predictability of their effect, these formulations were not used for the treatment of specific conditions, nor proven to have effect. Further, the known protocols for administration of glutathione did not provide convenience and high bioavailability.
The prior art thus suggests that glutathione esters might be suitable as orally bioavailable sources of glutathione, which are stable and may be rapidly absorbed. However, these are both more expensive than glutathione itself and have proven toxic.
Pure glutathione forms a flaky powder that retains a static electrical charge, due to triboelectric effects, making processing and formulation difficult. The powder particles may also have an electrostatic polarization, which is akin to an electret. Glutathione is a strong reducing agent, so that autooxidation occurs in the presence of oxygen or other oxidizing agents. U.S. Pat. No. 5,204,114, Demopoulos et al., expressly incorporated herein by reference in its entirety, provides a method of manufacturing glutathione tablets and capsules by the use of crystalline ascorbic acid as an additive to reduce triboelectric effects which interfere with high speed equipment and maintaining glutathione in a reduced state. A certain crystalline ascorbic acid is, in turn, disclosed in U.S. Pat. No. 4,454,125, Demopoulos, expressly incorporated by reference herein in its entirety. This crystalline form is useful as a lubricating agent for machinery. Ascorbic acid has the advantage that it is well tolerated, antioxidant, and reduces the net static charge on the glutathione.
In synthesizing glutathione in the body, cysteine, a thiol amino acid is required. Since the prior art suggests that oral administration of glutathione itself would be ineffective, prodrugs or precursor therapy was advocated. Therefore, the pri

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pharmaceutical preparations of glutathione and methods of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pharmaceutical preparations of glutathione and methods of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pharmaceutical preparations of glutathione and methods of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2476832

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.